23 research outputs found

    Thrombospondin-1 mediates distal tubule hypertrophy induced by glycated albumin.

    No full text
    Diabetic nephropathy is characterized by early hypertrophy in both glomerular and tubuloepithelial elements. However, no studies to date have established a direct causal link between hyperglycaemia and renal hypertrophy. Our previous studies have found that high glucose does not induce cellular hypertrophy or expression of TGF-beta1 (transforming growth factor-beta1) in distal renal tubule cells [Yang, Guh, Yang, Lai, Tsai, Hung, Chang and Chuang (1998) J. Am. Soc. Nephrol. 9, 182-193]. In the present study, we used AGEs (advanced glycation end-products) to mimic long-term hyperglycaemia. Similar to glucose, AGEs did not induce TGF-beta1 mRNA in distal renal tubule cells [MDCK (Madin-Darby canine kidney) cells]; however, TGF-beta1 bioactivity was increased significantly. This result indicated post-translational regulation. Since TSP-1 (thrombospondin-1) has been demonstrated to activate latent TGF-beta1 in a variety of systems, the following experiments were performed. We found that AGEs dose-dependently increased both intracellular and extracellular levels of TSP-1. Purified TSP-1, like AGEs, increased the cellular protein content. Furthermore, anti-TSP-1 neutralizing antibodies attenuated the AGE-induced increase in TGF-beta1 bioactivity and hypertrophy. Thus TSP-1 might mediate AGE-induced distal renal tubule hypertrophy. In addition, we observed several putative transcription factor binding sites in the TSP-1 promoter, including those for AP-1 (activator protein-1), CREB (cAMP response element binding protein), NF-kappaB (nuclear factor-kappaB), SRF (serum response factor) and HSF (heat-shock factor), by sequence mapping. We used an enhancer assay to screen possible transcription factors involved. We showed that AP-1 and CREB were specifically induced by AGEs; furthermore, TFD (transcription factor decoy) for AP-1 could attenuate the AGE-induced increases in TSP-1 levels and cellular hypertrophy. Thus regulation of TSP-1 might be critical for hyperglycaemic distal tubule hypertrophy. Furthermore, TSP-1 TFD might be a potential approach to ameliorate diabetic renal hypertrophy

    Regulation of type II transforming-growth-factor-beta receptors by protein kinase C iota.

    No full text
    TGF-beta (transforming growth factor-beta) is implicated in the pathogenesis of diabetic nephropathy. We previously demonstrated that up-regulation of type II TGF-beta receptor (TbetaRII) induced by high glucose might contribute to distal tubular hypertrophy [Yang, Guh, Yang, Lai, Tsai, Hung, Chang and Chuang (1998) J. Am. Soc. Nephrol. 9, 182-193]. We have elucidated the mechanism by using cultured Madin-Darby canine kidney cells. Enhancer assay and electrophoretic-mobility-shift assay were used to estimate the involvement of transcription factors. Western blotting and an in vitro kinase assay were used to evaluate the level and activity of protein kinase. We showed that glucose (100-900 mg/dl) induced an increase in mRNA level and promoter activity of TbetaRII (note: 'mg/dl' are the units commonly used in diabetes studies). The promoter region -209 to -177 appeared to contribute to positive transactivation of TbetaRII promoter by comparing five TbetaRII-promoter-CAT (chloramphenicol acetyl-transferase) plasmids. Moreover, the transcription factor AP-1 (activator protein 1) was significantly activated and specifically binds to TbetaRII promoter (-209 to -177). More importantly, we found that atypical PKC iota might be pivotal for high glucose-induced increase in both AP-1 binding and TbetaRII promoter activity. First, high glucose induced cytosolic translocation, activation and autophosphorylation of PKC iota. Secondly, antisense PKC iota expression plasmids attenuated high-glucose-induced increase in AP-1 binding and TbetaRII promoter activity; moreover, sense PKC iota expression plasmids enhanced these instead. Finally, we showed that antisense PKC iota expression plasmids might partly attenuate a high-glucose/TGF-beta1-induced increase in fibronectin. We conclude that PKC iota might mediate high-glucose-induced increase in TbetaRII promoter activity. In addition, antisense PKC iota expression plasmid effectively suppressed up-regulation of TbetaRII and fibronectin in hyperglycaemic distal-tubule cells

    Modification of Diet in Renal Disease (MDRD) Study and CKD Epidemiology Collaboration (CKD-EPI) Equations for Taiwanese Adults

    No full text
    <div><p>Background</p><p>Estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease (MDRD) study or the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations may not be accurate for Asians; thus, we developed modified eGFR equations for Taiwanese adults.</p><p>Methods</p><p>This cross-sectional study compared the Taiwanese eGFR equations, the MDRD study, and the CKD-EPI equations with inulin clearance (C<sub>in</sub>). A total of 695 adults including 259 healthy volunteers and 436 CKD patients were recruited. Participants from the Kaohsiung Medical University Hospital were used as the development set (N = 556) to develop the Taiwanese eGFR equations, whereas participants from the National Taiwan University Hospital were used as the validation set (N = 139) for external validation.</p><p>Results</p><p>The Taiwanese eGFR equations were developed by using the extended Bland-Altman plot in the development set. The Taiwanese MDRD equation was 1.309×MDRD<sup>0.912</sup>, Taiwanese CKD-EPI was 1.262×CKD-EPI<sup>0.914</sup> and Taiwanese four-level CKD-EPI was 1.205×four-level CKD-EPI<sup>0.914</sup>. In the validation set, the Taiwanese equations had the lowest bias, the Taiwanese equations and the Japanese CKD-EPI equation had the lowest RMSE, whereas the Taiwanese and the Japanese equations had the best precision and the highest P<sub>30</sub> among all equations. However, the Taiwanese MDRD equation had higher concordance correlation than did the Taiwanese CKD-EPI, the Taiwanese four-level CKD-EPI and the Japanese equations. Moreover, only the Taiwanese equations had no proportional bias among all of the equations. Finally, the Taiwanese MDRD equation had the best diagnostic performance in terms of ordinal logistic regression among all of the equations.</p><p>Conclusion</p><p>The Taiwanese MDRD equation is better than the MDRD, CKD-EPI, Japanese, Asian, Thai, Taiwanese CKD-EPI, and Taiwanese four-level CKD-EPI equations for Taiwanese adults.</p></div

    Determination of the Taiwanese eGFR equations in the development set.

    No full text
    <p>Taiwanese eGFR equations were derived by using linear regression of the differences on the average (i.e. the extended Bland-Altman plot). C<sub>in</sub> and the eGFR equations were log-transformed and plotted on the log-scale. The regression line (thin solid line) and its 95% prediction interval (dotted lines) were plotted along with the identity (thick solid diagonal) line. (A) The regression equation of the Taiwanese MDRD equation was 1.309×MDRD<sup>0.912</sup> in the (anti-logged) original unit. (B) The regression equation of the Taiwanese CKD-EPI equation was 1.262×CKD-EPI<sup>0.914</sup> in the original unit. (C) The regression equation of the Taiwanese four-level CKD-EPI equation was 1.205×four-level CKD-EPI<sup>0.914</sup> in the original unit.</p
    corecore