78 research outputs found

    Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters

    Get PDF
    We present a novel approach to enhance the spontaneous emission rate of single quantum emitters in an optical nanofiber-based cavity by introducing a narrow air-filled groove into the cavity. Our results show that the Purcell factor for single quantum emitters located inside the groove of the nanofiber-based cavity can be at least six times greater than that for such an emitter on the fiber surface when using an optimized cavity mode and groove width. Moreover, the coupling efficiency of single quantum emitters into the guided mode of this nanofiber-based cavity can reach up to \sim 80 %\% with only 35 cavity-grating periods. This new system has the potential to act as an all-fiber platform to realize efficient coupling of photons from single emitters into an optical fiber for quantum information applications

    Optical nanofiber-based cavity induced by periodic air-nanohole arrays

    Get PDF
    We experimentally realized an optical nanofiber-based cavity by combining a 1-D photonic crystal and Bragg grating structures. The cavity morphology comprises a periodic, triplex air-cube introduced at the waist of the nanofiber. The cavity has been theoretically characterized using FDTD simulations to obtain the reflection and transmission spectra. We have also experimentally measured the transmission spectra and a Q-factor of ~784(87) for a very short periodic structure has been observed. The structure provides strong confinement of the cavity field and its potential for optical network integration makes it an ideal candidate for use in nanophotonic and quantum information systems

    Fast Single-shot Imaging of Individual Ions via Homodyne Detection of Rydberg-Blockade-Induced Absorption

    Full text link
    We introduce well-separated 87^{87}Rb+^+ ions into an atomic ensemble by microwave ionization of Rydberg excitations and realize single-shot imaging of the individual ions with an exposure time of 1 μ\mus. This imaging sensitivity is reached by using homodyne detection of ion-Rydberg-atom interaction induced absorption. We obtain an ion detection fidelity of (80 ±\pm 5)\% from analyzing the absorption spots in acquired single-shot images. These \textit{in situ} images provide a direct visualization of the ion-Rydberg interaction blockade and reveal clear spatial correlations between Rydberg excitations. The capability of imaging individual ions in a single shot is of interest for investigating collisional dynamics in hybrid ion-atom systems and for exploring ions as a probe for measurements of quantum gases.Comment: 11 pages, 5 + 6 figure

    Telecom-wavelength spectra of a Rydberg state in a hot vapor

    Full text link
    We study telecom-wavelength spectra of a Rydberg state in an atomic vapor with a three-photon excitation scheme. Two lasers of 780 nm and 776 nm are used to pump Rubidium-85 atoms in a vapor cell to the 5D5/25D_{\mathrm{5/2}} state, from which a probe beam of 1292 nm in the O-band telecommunication wavelength drives a transition to the 21F7/221F_{\mathrm{7/2}} Rydberg state. We investigate the probe spectra over the power of pump lasers. The simulation based on a 4-level theoretical model captures the main features of the experimental results. This spectroscopic study paves the way for future experiments of making a direct link between fiber optics and radio transmission via Rydberg atoms.Comment: 5 pages and 4 figure

    Ternary Compression for Communication-Efficient Federated Learning

    Full text link
    Learning over massive data stored in different locations is essential in many real-world applications. However, sharing data is full of challenges due to the increasing demands of privacy and security with the growing use of smart mobile devices and IoT devices. Federated learning provides a potential solution to privacy-preserving and secure machine learning, by means of jointly training a global model without uploading data distributed on multiple devices to a central server. However, most existing work on federated learning adopts machine learning models with full-precision weights, and almost all these models contain a large number of redundant parameters that do not need to be transmitted to the server, consuming an excessive amount of communication costs. To address this issue, we propose a federated trained ternary quantization (FTTQ) algorithm, which optimizes the quantized networks on the clients through a self-learning quantization factor. A convergence proof of the quantization factor and the unbiasedness of FTTQ is given. In addition, we propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems. Empirical experiments are conducted to train widely used deep learning models on publicly available datasets, and our results demonstrate the effectiveness of FTTQ and T-FedAvg compared with the canonical federated learning algorithms in reducing communication costs and maintaining the learning performance

    Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode

    Full text link
    We demonstrate the trajectory measurement of the single neutral atoms deterministically using a high-finesse optical micro-cavity. Single atom strongly couples to the high-order transverse vacuum TEM_{10} mode, instead of the usual TEM_{00} mode, and the parameter of the system is (g_{10},\kappa ,\gamma )=2\pi \times (20.5,2.6,2.6)MHz. The atoms simply fall down freely from the magneto-optic trap into the cavity modes and the trajectories of the single atoms are linear. The transmission spectrums of atoms passing through the TEM10 mode are detected by a single photon counting modules and well fitted. Thanks to the tilted cavity transverse TEM10 mode, which is inclined to the vertical direction about 45 degrees and it helps us, for the first time, to eliminate the degenerate trajectory of the single atom falling through the cavity and get the unique atom trajectory. Atom position with high precision of 0.1{\mu}m in the off-axis direction (axis y) is obtained, and the spatial resolution of 5.6{\mu}m is achieved in time of 10{\mu}s along the vertical direction (axis x). The average velocity of the atoms is also measured from the atom transits, which determines the temperature of the atoms in magneto-optic trap, 186{\mu}K {\pm} 19{\mu}K.Comment: 13 pages, 5figure

    Interconversion of intrinsic defects in SrTiO3(001)SrTiO_3(001)

    Get PDF
    Photoemission features associated with states deep in the band gap of n−SrTiO₃ (001) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons

    Microsatellite Development for an Endangered Bream Megalobrama pellegrini (Teleostei, Cyprinidae) Using 454 Sequencing

    Get PDF
    Megalobrama pellegrini is an endemic fish species found in the upper Yangtze River basin in China. This species has become endangered due to the construction of the Three Gorges Dam and overfishing. However, the available genetic data for this species is limited. Here, we developed 26 polymorphic microsatellite markers from the M. pellegrini genome using next-generation sequencing techniques. A total of 257,497 raw reads were obtained from a quarter-plate run on 454 GS-FLX titanium platforms and 49,811 unique sequences were generated with an average length of 404 bp; 24,522 (49.2%) sequences contained microsatellite repeats. Of the 53 loci screened, 33 were amplified successfully and 26 were polymorphic. The genetic diversity in M. pellegrini was moderate, with an average of 3.08 alleles per locus, and the mean observed and expected heterozygosity were 0.47 and 0.51, respectively. In addition, we tested cross-species amplification for all 33 loci in four additional breams: M. amblycephala, M. skolkovii, M. terminalis, and Sinibrama wui. The cross-species amplification showed a significant high level of transferability (79%–97%), which might be due to their dramatically close genetic relationships. The polymorphic microsatellites developed in the current study will not only contribute to further conservation genetic studies and parentage analyses of this endangered species, but also facilitate future work on the other closely related species
    corecore