18 research outputs found
A heterozygous moth genome provides insights into herbivory and detoxification
How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al
Adaptive DDK Filter for GRACE Time‐Variable Gravity Field with a Novel Anisotropic Filtering Strength Metric
Filtering for GRACE temporal gravity fields is a necessary step before calculating surface mass anomalies. In this study, we propose a new denoising and decorrelation kernel (DDK) filtering scheme called adaptive DDK filter. The involved error covariance matrix (ECM) adopts nothing but the monthly time‐variable released by several data centers. The signal covariance matrix (SCM) involved is monthly time‐variable also. Specifically, it is parameterized into two parameters, namely the regularization coefficient and the power index of signal covariances, which are adaptively determined from the data themselves according to the generalized cross validation (GCV) criterion. The regularization coefficient controls the global constraint on the signal variances of all degrees, while the power index adjusts the attenuation of the signal variances from low to high degrees, namely local constraint. By tuning these two parameters for the monthly SCM, the adaptability to the data and the optimality of filtering strength can be expected. In addition, we also devise a half-weight polygon area (HWPA) of the filter kernel to measure the filtering strength of the anisotropic filter more reasonably. The proposed adaptive DDK filter and filtering strength metric are tested based on CSR GRACE temporal gravity solutions with their ECMs from January 2004 to December 2010. Results show that the selected optimal power indices range from 3.5 to 6.9, with the corresponding regularization parameters range from 1 × 1014 to 5 × 1019. The adaptive DDK filter can retain comparable/more signal amplitude and suppress more high‐degree noise than the conven-tional DDK filters. Compared with the equivalent smoothing radius (ESR) of filtering strength, the HWPA has stronger a distinguishing ability, especially when the filtering strength is similar.Physical and Space Geodes
Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization
In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process