135 research outputs found

    Nonlinear statistical characteristics of the multi-directional waves with equivalent energy

    Get PDF
    Directional distribution is believed to have a significant impact on the statistical characteristics in multi-directional sea states. In real sea states, short-crested waves are discrete not only in frequency but also in direction. For the former one, they are well explained in unidirectional mode, but for the latter one, they are not. In this paper, the kurtosis of short-crested waves with equivalent energy is first discussed. Unimodal-spectrum-multi-direction sea states and bimodal-spectrum-multi-direction sea states are simulated for a long time in a numerical wave basin based on the high-order spectral method. In the equivalent sea-swell sea state, the spatial evolution of kurtosis becomes more inhomogeneous, along with the maximum value of kurtosis being larger and the area where the maximum value occurs wider in the configuration with a crossing angle β = 40° than that with β = 0°, while little variations in swell-dominated and wind-sea-dominated states. A positive linear correlation between wavelet group steepness and kurtosis is obtained in a unimodal sea state, but not applied to a crossing sea state characterized by a bimodal spectrum. The exceedance probability of wave height and wave crest distribution at maximum kurtosis is also given. These findings can help predict the probability of extreme waves occurring, guiding the selection of ocean engineering sites to avoid extreme configurations

    Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    Get PDF
    The arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH)2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 F g−1 at 1.0 A g−1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. The solid devices exhibit high volumetric capacitance of 39.3 mF cm−3 at the current density 0.3 mA cm−3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration

    Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field

    Get PDF
    © 2019 Elsevier Ltd To investigate the natural convection heat transfer of Fe3O4-water nanofluids in a rectangular cavity under an adjustable magnetic field, two experimental systems are established. Meanwhile, several factors, such as nanoparticle mass fractions (ω = 0%, 0.1%, 0.3%, 0.5%), magnetic field directions (horizontal and vertical), magnetic field intensities (B = 0.0 T, 0.01 T, 0.02 T), rotation angles of the cavity (α = 0°, 45°, 90°, 135°), and PPI of Cu metal foam (PPI = 0, 5, 15) are taken into consideration to research the natural convection of Fe3O4-water nanofluids in a rectangular cavity. With the increasing nanoparticle mass fraction, Nusselt number firstly rises but then falls, and the maximum value of which appears at a nanoparticle mass fraction ω = 0.3%. Horizontal magnetic field is not significant to the thermal performance enhancement, but vertical magnetic field shows an opposite trend and makes a positive contribution to the thermal performance. The cavity with a rotation angle α = 90° shows the highest thermal performance. Nusselt number of the cavity filled with metal foam can be improved obviously compared with that without metal foam. But the increasing PPI of metal foam is disadvantageous to heat transfer performance

    Artificial Intelligence for Complex Network: Potential, Methodology and Application

    Full text link
    Complex networks pervade various real-world systems, from the natural environment to human societies. The essence of these networks is in their ability to transition and evolve from microscopic disorder-where network topology and node dynamics intertwine-to a macroscopic order characterized by certain collective behaviors. Over the past two decades, complex network science has significantly enhanced our understanding of the statistical mechanics, structures, and dynamics underlying real-world networks. Despite these advancements, there remain considerable challenges in exploring more realistic systems and enhancing practical applications. The emergence of artificial intelligence (AI) technologies, coupled with the abundance of diverse real-world network data, has heralded a new era in complex network science research. This survey aims to systematically address the potential advantages of AI in overcoming the lingering challenges of complex network research. It endeavors to summarize the pivotal research problems and provide an exhaustive review of the corresponding methodologies and applications. Through this comprehensive survey-the first of its kind on AI for complex networks-we expect to provide valuable insights that will drive further research and advancement in this interdisciplinary field.Comment: 51 pages, 4 figures, 10 table

    Large anomalous Hall effect in a hexagonal ferromagnetic Fe5Sn3 single crystal

    Full text link
    In this paper, we report an experimental observation of the large anomalous Hall effect (AHE) in a hexagonal ferromagnetic Fe5Sn3 single crystal with current along the b axis and a magnetic field normal to the bc plane. The intrinsic contribution of the anomalous Hall conductance sigma_AH^int was approximately 613 {\Omega}-1 cm-1, which was more than 3 times the maximum value in the frustrated kagome magnet Fe3Sn2 and nearly independent of the temperature over a wide range between 5 and 350 K. The analysis results revealed that the large AHE was dominated by a common, intrinsic term, while the extrinsic contribution, i.e., the skew scattering and side jump, turned out to be small. In addition to the large AHE, it was found the types of majority carriers changed at approximately 275 and 30 K, consistent with the critical temperatures of the spin reorientation. These findings suggest that the hexagonal ferromagnetic Fe5Sn3 single crystal is an excellent candidate to use for the study of the topological features in ferromagnets.Comment: accepted as a rapid communication in Phy. Rev.

    Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction

    Get PDF
    The water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoC at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures

    A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe

    Get PDF
    The TTAA-specific transposon piggyBac (PB), originally isolated from the cabbage looper moth, Trichoplusia ni, has been utilized as an insertional mutagenesis tool in various eukaryotic organisms. Here, we show that PB transposes in the fission yeast Schizosaccharomyces pombe and leaves almost no footprints. We developed a PB-based mutagenesis system for S. pombe by constructing a strain with a selectable transposon excision marker and an integrated transposase gene. PB transposition in this strain has low chromosomal distribution bias as shown by deep sequencing-based insertion site mapping. Using this system, we obtained loss-of-function alleles of klp5 and klp6, and a gain-of-function allele of dam1 from a screen for mutants resistant to the microtubule-destabilizing drug thiabendazole. From another screen for cdc25-22 suppressors, we obtained multiple alleles of wee1 as expected. The success of these two screens demonstrated the usefulness of this PB-mediated mutagenesis tool for fission yeast

    Production of Transgenic Pigs Mediated by Pseudotyped Lentivirus and Sperm

    Get PDF
    Sperm-mediated gene transfer can be a very efficient method to produce transgenic pigs, however, the results from different laboratories had not been widely repeated. Genomic integration of transgene by injection of pseudotyped lentivirus to the perivitelline space has been proved to be a reliable route to generate transgenic animals. To test whether transgene in the lentivirus can be delivered by sperm, we studied incubation of pseudotyped lentiviruses and sperm before insemination. After incubation with pig spermatozoa, 62±3 lentiviral particles were detected per 100 sperm cells using quantitative real-time RT-PCR. The association of lentivirus with sperm was further confirmed by electron microscopy. The sperm incubated with lentiviral particles were artificially inseminated into pigs. Of the 59 piglets born from inseminated 5 sows, 6 piglets (10.17%) carried the transgene based on the PCR identification. Foreign gene and EGFP was successfully detected in ear tissue biopsies from two PCR-positive pigs, revealed via in situ hybridization and immunohistochemistry. Offspring of one PCR-positive boar with normal sows showed PCR-positive. Two PCR-positive founders and offsprings of PCR-positive boar were further identified by Southern-blot analysis, out of which the two founders and two offsprings were positive in Southern blotting, strongly indicating integration of foreign gene into genome. The results indicate that incubation of sperm with pseudotyped lentiviruses can incorporated with sperm-mediated gene transfer to produce transgenic pigs with improved efficiency

    Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis

    Get PDF
    Platinum-based nanocatalysts play a crucial role in various electrocatalytic systems that are important for renewable, clean energy conversion, storage and utilization. However, the scarcity and high cost of Pt seriously limit the practical application of these catalysts. Decorating Pt catalysts with other transition metals offers an effective pathway to tailor their catalytic properties, but often at the sacrifice of the electrochemical active surface area (ECSA). Here we report a single-atom tailoring strategy to boost the activity of Pt nanocatalysts with minimal loss in surface active sites. By starting with PtNi alloy nanowires and using a partial electrochemical dealloying approach, we create single-nickel-atom-modified Pt nanowires with an optimum combination of specific activity and ECSA for the hydrogen evolution, methanol oxidation and ethanol oxidation reactions. The single-atom tailoring approach offers an effective strategy to optimize the activity of surface Pt atoms and enhance the mass activity for diverse reactions, opening a general pathway to the design of highly efficient and durable precious metal-based catalysts
    • …
    corecore