47 research outputs found

    Case report: Effectiveness of sirolimus in treating partial DiGeorge Syndrome with Autoimmune Lymphoproliferative Syndrome (ALPS)-like features

    Get PDF
    BackgroundDiGeorge Syndrome (DGS) is a rare disease associated with 22q11.2 chromosomal microdeletion, also known as a velocardiofacial syndrome, based on the frequent involvements of the palate, facial, and heart problems. Hematologic autoimmunity is rare in DGS but presents with a refractory course and poor prognosis. Herein, we report a case of partial DGS in a patient with refractory immune cytopenia and autoimmune lymphoproliferative syndrome (ALPS)-like manifestations.Case descriptionA 10-year-old boy with growth retardation presented initially with a ventricular septal defect at 7 months old, which had been repaired soon after. The patient suffered from thrombocytopenia and progressed into chronic refractory immune thrombocytopenia (ITP) at 30 months old. One year later, the patient developed multilineage cytopenias including thrombocytopenia, neutropenia, and anemia. First-line treatment of ITP, like high-dose dexamethasone and intravenous immunoglobulin, had little or short-term effect on controlling symptoms. Whole-exome sequencing revealed the presence of a de novo heterozygous 2.520 Mb deletion on chromosome 22q11.21. Moreover, decreased proportion of naive T cells and elevated double-negative T cells were found. The patient was given sirolimus therapy (1.5 mg/m2, actual blood concentration range: 4.0–5.2 ng/ml) without adding other immunosuppressive agents. The whole blood cell count was gradually restored after a month, and the disease severity was soothed with less frequency of infections and bleeding events. Decreased spleen size and restrained lymph node expansion were achieved after 3-month sirolimus monotherapy.ConclusionsThis case is the first description on the efficacy of sirolimus monotherapy to treat refractory multilineage cytopenias of DGS presented with ALPS-like features

    Empagliflozin inhibits coronary microvascular dysfunction and reduces cardiac pericyte loss in db/db mice

    Get PDF
    BackgroundCoronary microvascular dysfunction (CMD) is a pathophysiological feature of diabetic heart disease. However, whether sodium-glucose cotransporter 2 (SGLT2) inhibitors protect the cardiovascular system by alleviating CMD is not known.ObjectiveWe observed the protective effects of empagliflozin (EMPA) on diabetic CMD.Materials and methodsThe mice were randomly divided into a db/db group and a db/db + EMPA group, and db/m mice served as controls. At 8 weeks of age, the db/db + EMPA group was given empagliflozin 10 mg/(kg⋅d) by gavage for 8 weeks. Body weight, fasting blood glucose and blood pressure were dynamically observed. Cardiac systolic and diastolic function and coronary flow reserve (CFR) were detected using echocardiography. The coronary microvascular structure and distribution of cardiac pericytes were observed using immunofluorescence staining. Picrosirius red staining was performed to evaluate cardiac fibrosis.ResultsEmpagliflozin lowered the increased fasting blood glucose levels of the db/db group. The left ventricular ejection fraction, left ventricular fractional shortening, E/A ratio and E/eâ€Č ratio were not significantly different between the three groups. CFR was decreased in the db/db group, but EMPA significantly improved CFR. In contrast to the sparse and abnormal expansion of coronary microvessels observed in the db/db group, the number of coronary microvessels was increased, and the capillary diameter was decreased in the db/db + EMPA group. The number and microvascular coverage of cardiac pericytes were reduced in the db/db mice but were improved by EMPA. The cardiac fibrosis was increased in db/db group and may alleviate by EMPA.ConclusionEmpagliflozin inhibited CMD and reduced cardiac pericyte loss in diabetic mice

    Enhanced Integrity of White Matter Microstructure in Mind–Body Practitioners: A Whole-Brain Diffusion Tensor Imaging Study

    No full text
    Tai Chi Chuan (TCC) is an increasingly popular multimodal mind–body practice with potential cognitive benefits, yet the neurobiological mechanisms underlying these effects, particularly in relation to brain white matter (WM) microstructure, remain largely unknown. In this study, we used diffusion tensor imaging (DTI) and the attention network test (ANT) to compare 22 TCC practitioners and 18 healthy controls. We found extensive differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between the two groups. Specifically, TCC practitioners had significantly different diffusion metrics in the corticospinal tract (CST), fornix (FX)/stria terminalis (ST), and cerebral peduncle (CP). We also observed a significant correlation between increased FA values in the right CP and ANT performance in TCC practitioners. Our findings suggest that optimized regional WM microstructure may contribute to the complex information processing associated with TCC practice, providing insights for preventing cognitive decline and treating neurological disorders with cognitive impairment in clinical rehabilitation

    Optimization of spinning parameters of 20/316L bimetal composite tube based on orthogonal test

    No full text
    The spin forming parameters of bimetallic composite pipe were optimized by FEM and experiment, and the torque and the residual contact pressure were analyzed during forming process. Adoption of The orthogonal test of four factors and five levels to gain the optimal spinning parameters (ÎŽ = 0.16mm, Κ = 0.4mm, ÎČ = 3.0∘, f = 0.5) and the effects of factors on analysis indicators under the condition of maximum residual contact pressure and small torque. The simulation results showed that the residual contact pressure was nearly 1MPa higher and the torque was lower about 160N·m than unoptimized results. It proved that the orthogonal test method was effective for the optimization of spinning parameters of bimetal composite tube. The accuracy of numerical simulation value was verified by the drawing experiment of the composite tube

    Enhanced Integrity of White Matter Microstructure in Mind–Body Practitioners: A Whole-Brain Diffusion Tensor Imaging Study

    No full text
    Tai Chi Chuan (TCC) is an increasingly popular multimodal mind-body practice with potential cognitive benefits, yet the neurobiological mechanisms underlying these effects, particularly in relation to brain white matter (WM) microstructure, remain largely unknown. In this study, we used diffusion tensor imaging (DTI) and the attention network test (ANT) to compare 22 TCC practitioners and 18 healthy controls. We found extensive differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between the two groups. Specifically, TCC practitioners had significantly different diffusion metrics in the corticospinal tract (CST), fornix (FX)/stria terminalis (ST), and cerebral peduncle (CP). We also observed a significant correlation between increased FA values in the right CP and ANT performance in TCC practitioners. Our findings suggest that optimized regional WM microstructure may contribute to the complex information processing associated with TCC practice, providing insights for preventing cognitive decline and treating neurological disorders with cognitive impairment in clinical rehabilitation.</p

    Modification of chitosan-Fe 3

    No full text

    Data from: MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries

    No full text
    MoO2 nanosheets embedded in the amorphous carbon matrix (MoO2/C) are successfully synthesized via a facile hydrothermal method and investigated as an anode for sodium-ion batteries. Because of the efficient ion transport channels and good volume change accommodation, MoO2/C delivers a discharge/charge capacity of 367.8/367.0 mAh g−1 with high coulombic efficiency (99.4%) after 100 cycles at a current density of 50 mA g−1

    Hydrothermally hollow SnO 2

    No full text

    Position Control of Heave Compensation for Offshore Cranes Based on a Particle Swarm Optimized Model Predictive Trajectory Path Controller

    No full text
    The wave compensation system can be very useful in several naval applications. It can greatly reduce the relative irregular motion between the two ships when replenishment operations are performed, or between the ship and the offshore platform, which is caused by the waves. It is widely used in offshore operations, offshore cargo transfer, oil and gas exploitation, deep-sea mining, the hoisting and recovery of submersibles, etc. However, when a crane is used in a ship or moving platform, due to the influence of the hull, the crane load movement is similar to a space ball pendulum, which causes the heave displacement to show significant nonlinear motion characteristics. Moreover, the time delay of the detection mechanism and control error could result in untimely compensation, which deteriorates the performance. Consequently, this paper proposes one advanced prediction compensation method, namely Particle Swarm Optimized Model Predictive Trajectory Path controller (PSO−MPTP), which can improve the heave compensation performance. This method, which is based on Model Predictive Control (MPC), is firstly applied to the position servo system and takes into account the heave prediction and control effects simultaneously. The heave displacement of the crane load could be predicted in multiple steps in advance and used as the input of the position loop of the compensation machine. The achieved simulations show that the proposed controller has better prediction ability, higher control accuracy, and stronger robustness

    Position Control of Heave Compensation for Offshore Cranes Based on a Particle Swarm Optimized Model Predictive Trajectory Path Controller

    No full text
    The wave compensation system can be very useful in several naval applications. It can greatly reduce the relative irregular motion between the two ships when replenishment operations are performed, or between the ship and the offshore platform, which is caused by the waves. It is widely used in offshore operations, offshore cargo transfer, oil and gas exploitation, deep-sea mining, the hoisting and recovery of submersibles, etc. However, when a crane is used in a ship or moving platform, due to the influence of the hull, the crane load movement is similar to a space ball pendulum, which causes the heave displacement to show significant nonlinear motion characteristics. Moreover, the time delay of the detection mechanism and control error could result in untimely compensation, which deteriorates the performance. Consequently, this paper proposes one advanced prediction compensation method, namely Particle Swarm Optimized Model Predictive Trajectory Path controller (PSO&minus;MPTP), which can improve the heave compensation performance. This method, which is based on Model Predictive Control (MPC), is firstly applied to the position servo system and takes into account the heave prediction and control effects simultaneously. The heave displacement of the crane load could be predicted in multiple steps in advance and used as the input of the position loop of the compensation machine. The achieved simulations show that the proposed controller has better prediction ability, higher control accuracy, and stronger robustness
    corecore