6,631 research outputs found

    Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae

    Get PDF
    Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span

    Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications

    Get PDF
    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different growing stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene

    Evolution of Interlayer Coupling in Twisted MoS2 Bilayers

    Full text link
    Van der Waals (vdW) coupling is emerging as a powerful method to engineer and tailor physical properties of atomically thin two-dimensional (2D) materials. In graphene/graphene and graphene/boron-nitride structures it leads to interesting physical phenomena ranging from new van Hove singularities1-4 and Fermi velocity renormalization5, 6 to unconventional quantum Hall effects7 and Hofstadter's butterfly pattern8-12. 2D transition metal dichalcogenides (TMDCs), another system of predominantly vdW-coupled atomically thin layers13, 14, can also exhibit interesting but different coupling phenomena because TMDCs can be direct or indirect bandgap semiconductors15, 16. Here, we present the first study on the evolution of interlayer coupling with twist angles in as-grown MoS2 bilayers. We find that an indirect bandgap emerges in bilayers with any stacking configuration, but the bandgap size varies appreciably with the twist angle: it shows the largest redshift for AA- and AB-stacked bilayers, and a significantly smaller but constant redshift for all other twist angles. The vibration frequency of the out-of-plane phonon in MoS2 shows similar twist angle dependence. Our observations, together with ab initio calculations, reveal that this evolution of interlayer coupling originates from the repulsive steric effects, which leads to different interlayer separations between the two MoS2 layers in different stacking configurations

    Di-μ-benzoato-κ3 O,O′:O′;κ3 O:O,O′-bis[aqua­bis­(benzoato-κ2 O,O′)(dimethylformamide-κO)europium(III)]

    Get PDF
    The title dimeric complex, [Eu2(C7H5O2)6(C3H7NO)2(H2O)2], is centrosymmetric, implying that pairs of equivalent Eu3+ ions and ligands lie trans to each other and that the two Eu3+ ions have exactly the same coordination environment. Each Eu3+ ion is nine-coordinated by two bidentate benzoate ligands, two bridging tridentate chelating benzoate ligands, and one dimethylformamide and one water molecule. The coordination polyhedron of each Eu3+ ion can be described with a distorted monocapped square-anti­prismatic geometry. The mol­ecular structure is stabilized by intra- and inter­molecular hydrogen bonds between the water mol­ecules and benzoate O atoms

    Saccharomyces cerevisiae Est3p dimerizes in vitro and dimerization contributes to efficient telomere replication in vivo

    Get PDF
    In Saccharomyces cerevisiae at least five genes, EST1, EST2, EST3, TLC1 and CDC13, are required for telomerase activity in vivo. The telomerase catalytic subunit Est2p and telomerase RNA subunit Tlc1 constitute the telomerase core enzyme. Est1p and Est3p are the other subunits of telomerase holoenzyme. In order to dissect the function of Est3p in telomere replication, we over-expressed and purified recombinant wild-type and mutant Est3 proteins. The wild-type protein, as well as the K71A, E104A and T115A mutants were able to dimerize in vitro, while the Est3p-D49A, -K68A or -D166A mutant showed reduced ability to dimerize. Mutations in Est3p that decreased dimerization also appeared to cause telomere shortening in vivo. Double point mutation of Est3p-D49A-K68A and single point mutation of Est3p-K68A showed similar telomere shortening, suggesting that the K68 residue might be more important for telomerase activity. The ectopic co-expression of K71A or T115A mutant with wild-type Est3p using centromere plasmids caused telomere shortening, while co-expression of the D49A, K68A, D86A or F103A mutants with wild-type Est3p had no effect on telomere length regulation. These data suggested that dimerization is important for Est3p function in vivo

    A new species of Fordiophyton (Sonerileae, Melastomataceae) from Yunnan, China

    Get PDF
    Fordiophyton jinpingense (Melastomataceae; Sonerileae), a species occurring in south-eastern Yunnan, China, is described as new, based on morphological and molecular data. Phylogenetic analyses, based on nrITS sequence data, showed that, except F. breviscapum, all species sampled in Fordiophyton formed a strongly supported clade in which two geographical lineages were recovered. The generic placement of F. jinpingense is well supported by phylogenetic analyses and a character combination of 4-merous flowers, distinctly dimorphic stamens and the connectives basally not calcarate. Molecular divergence and morphological evidence indicate that F. jinpingense is well separated from other members of the genus, thus justifying its recognition as a distinct species. Fordiophyton jinpingense is phylogenetically closest to F. repens, but differs markedly from the latter in stem morphology (short, obtusely 4-sided vs. long, 4-angular), habit (erect vs. creeping), leaf size (6–16.5 × 4.5–13 cm vs. 4–7.5 × 4–6.5 cm) and flower number per inflorescence (5–13 vs. 3–6)

    Protective effect of low-dose risedronate against osteocyte apoptosis and bone loss in ovariectomized rats

    Get PDF
    Osteocyte apoptosis is the first reaction to estrogen depletion, thereby stimulating osteoclastic bone resorption resulting in bone loss. We investigated the effects of two different risedronate (RIS) doses (high and low) on osteocyte apoptosis, osteoclast activity and bone loss in ovariectomized rats. Forty rats with ovariectomy (OVX) and sham ovariectomy (SHAM) were divided into 4 groups: 1) SHAM rats treated with saline (SHAM); 2) OVX rats treated with saline (OVX); 3) OVX rats treated with low-dose RIS (OVX-LR, 0.08 μg/kg/day); 4) OVX rats treated with high-dose RIS (OVX-HR, 0.8 μg/kg/day). All animals were sacrificed 90 days after surgery for the examinations of osteocyte apoptosis by caspase-3 staining, osteoclast activity by TRAP staining and bone volume by micro-CT scanning in lumbar vertebral cancellous bone. Both low and high dose RIS significantly reduced caspase-3 positive osteocytes, empty lacunae and TRAP positive osteoclasts in OVX rats. Although the difference in caspase-3 positive osteocytes was not significant between the OVX-LR and OVX-HR groups, numerically these cells were significantly more prevalent in OVX-HR (not OVX-LR) group than in SHAM group. TRAP positive osteoclasts were significantly higher in OVX-LR group than in SHAM or OVX-HR group. There was no significant difference in bone volume among the OVX-LR, OVX-HR and SHAM groups, but lower in OVX group alone. However, significant increase in trabecular thickness only occurred in OVX-LR group. We conclude that both low and high dose RIS significantly inhibit osteocyte apoptosis and osteoclast activity in OVX rats, but the low-dose RIS has weaker effect on osteoclast activity. However, low-dose RIS preserves cancellous bone mass and microarchitecture as well as high-dose RIS after estrogen depletion
    corecore