11,184 research outputs found

    Analysis of the Aerodynamic Character of Bionic Wingspan on the Basis of Frigate Wing Structure

    Get PDF
    This paper extracts the frigate bird’s leading edge contour by CATIA on the basis of the obverse and side pictures when frigate bird glides. Then three bionic wingspans of bending update, forward and integrating the two are built combining NACA 4412 airfoil. Compared with simple wingspan, the drag force of testing wingspan can be suppressed significantly, because the wingspan bending forward can form airflow of S style which declines the slope of the path-line of airflow and reduces the leading edge’s pressures. As a result the working condition is improved because the bending forward wingspan reduces air’s velocity. The lift efficiency of bending update wingspan may be improved because of increasing the leading edge’s pressure resulting in high speed airflow. Key words: leading edge contour; bionic wingspans; NACA 4412; aerodynamic performanc

    Quantum Dynamic Optimization Algorithm for Neural Architecture Search on Image Classification

    Get PDF
    Deep neural networks have proven to be effective in solving computer vision and natural language processing problems. To fully leverage its power, manually designed network templates, i.e., Residual Networks, are introduced to deal with various vision and natural language tasks. These hand-crafted neural networks rely on a large number of parameters, which are both data-dependent and laborious. On the other hand, architectures suitable for specific tasks have also grown exponentially with their size and topology, which prohibits brute force search. To address these challenges, this paper proposes a quantum dynamic optimization algorithm to find the optimal structure for a candidate network using Quantum Dynamic Neural Architecture Search (QDNAS). Specifically, the proposed quantum dynamics optimization algorithm is used to search for meaningful architectures for vision tasks and dedicated rules to express and explore the search space. The proposed quantum dynamics optimization algorithm treats the iterative evolution process of the optimization over time as a quantum dynamic process. The tunneling effect and potential barrier estimation in quantum mechanics can effectively promote the evolution of the optimization algorithm to the global optimum. Extensive experiments on four benchmarks demonstrate the effectiveness of QDNAS, which is consistently better than all baseline methods in image classification tasks. Furthermore, an in-depth analysis is conducted on the searchable networks that provide inspiration for the design of other image classification networks

    Tuberous Sclerosis complex protein 2-independent activation of mTORC1 by human cytomegalovirus pUL38

    Get PDF
    The mammalian target of rapamycin complex 1 (mTORC1) controls cell growth and anabolic metabolism and is a critical host factor activated by human cytomegalovirus (HCMV) for successful infection. The multifunctional HCMV protein pUL38 previously has been reported to activate mTORC1 by binding to and antagonizing tuberous sclerosis complex protein 2 (TSC2) (J. N. Moorman et al., Cell Host Microbe 3:253–262, 2008, http://dx.doi.org/10.1016/j.chom.2008.03.002). pUL38 also plays a role in blocking endoplasmic reticulum stress-induced cell death during HCMV infection. In this study, we showed that a mutant pUL38 lacking the N-terminal 24 amino acids (pHA-UL38(25–331)) was fully functional in suppressing cell death during infection. Interestingly, pHA-UL38(25–331) lost the ability to interact with TSC2 but retained the ability to activate mTORC1, although to a lesser extent than full-length pHA-UL38. Recombinant virus expressing pHA-UL38(25–331) replicated with ∼10-fold less efficiency than the wild-type virus at a low multiplicity of infection (MOI), but it grew similarly well at a high MOI, suggesting an MOI-dependent importance of pUL38-TSC2 interaction in supporting virus propagation. Site-directed mutational analysis identified a TQ motif at amino acid residues 23 and 24 as critical for pUL38 interaction with TSC2. Importantly, when expressed in isolation, the TQ/AA substitution mutant pHA-UL38 TQ/AA was capable of activating mTORC1 just like pHA-UL38(25–331). We also created TSC2-null U373-MG cell lines by CRISPR genome editing and showed that pUL38 was capable of further increasing mTORC1 activity in TSC2-null cells. Therefore, this study identified the residues important for pUL38-TSC2 interaction and demonstrated that pUL38 can activate mTORC1 in both TSC2-dependent and -independent manners. IMPORTANCE HCMV, like other viruses, depends exclusively on its host cell to propagate. Therefore, it has developed methods to protect against host stress responses and to usurp cellular processes to complete its life cycle. mTORC1 is believed to be important for virus replication, and HCMV maintains high mTORC1 activity despite the stressful cellular environment associated with infection. mTORC1 inhibitors suppressed HCMV replication in vitro and reduced the incidence of HCMV reactivation in transplant recipients. We demonstrated that mTORC1 was activated by HCMV protein pUL38 in both TSC2-dependent and TSC2-independent manners. The pUL38-independent mode of mTORC1 activation also has been reported. These novel findings suggest the evolution of sophisticated approaches whereby HCMV activates mTORC1, indicating its importance in the biology and pathogenesis of HCMV

    Attention Deficit Hyperactivity Disorder comorbid oppositional defiant disorder and its predominately inattentive type: evidence for an association with COMT but not MAOA in a Chinese sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are three childhood disruptive behavior disorders (DBDs), attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD). The most common comorbid disorder in ADHD is ODD. DSM-IV describes three ADHD subtypes: predominantly inattentive type (ADHD-IA), predominantly hyperactive-impulsive type (ADHD-HI), and combined type (ADHD-C). Prior work suggests that specific candidate genes are associated with specific subtypes of ADHD in China. Our previous association studies between ADHD and functional polymorphisms of COMT and MAOA, consistently showed the low transcriptional activity alleles were preferentially transmitted to ADHD-IA boys. Thus, the goal of the present study is to test the hypothesis that COMT Val158Met and MAOA-uVNTR jointly contribute to the ODD phenotype among Chinese ADHD boys.</p> <p>Methods</p> <p>171 Chinese boys between 6 and 17.5 years old (mean = 10.3, SD = 2.6) with complete COMT val158met and MAOA-uVNTR genotyping information were studied. We used logistic regression with genotypes as independent variables and the binary phenotype as the dependent variable. We used p < 0.05 as the level of nominal statistical significance. Bonferroni correction procedures were used to adjust for multiple comparisons.</p> <p>Results</p> <p>Our results highlight the potential etiologic role of COMT in the ADHD with comorbid ODD and its predominately inattentive type in male Chinese subjects. ADHD with comorbid ODD was associated with homozygosity of the high-activity Val allele, while the predominantly inattentive ADHD subtype was associated with the low-activity Met allele. We found no evidence of association between the MAOA-uVNTR variant and ADHD with comorbid ODD or the ADHD-IA subtype.</p> <p>Conclusion</p> <p>Our study of attention deficit hyperactivity disorder comorbid oppositional defiant disorder and its predominately inattentive type highlights the potential etiologic role of COMT for ADHD children in China. But we failed to observe an interaction between COMT and MAOA, which suggests that epistasis between COMT and MAOA genes does not influence the phenotype of ADHD-IA with comorbid ODD in a clinical sample of Chinese male subjects. To confirm our findings further studies with a larger number of subjects and healthy controls are needed.</p

    Soft Scattering Evaporation of Dark Matter Subhalos by Inner Galactic Gases

    Full text link
    The large gap between a galactic dark matter subhalo's velocity and its own gravitational binding velocity creates the situation that dark matter soft-scattering on baryons to evaporate the subhalo, if kinetic energy transfer is efficient by low momentum exchange. Small subhalos can evaporate before dark matter thermalize with baryons due to the low binding velocity. In case dark matter acquires an electromagnetic dipole moment, the survival of low-mass subhalos requires stringent limits on the photon-mediated soft scattering. We calculate the subhalo evaporation rate via soft collision by ionization gas and accelerated cosmic rays, and show the stability of subhalos lighter than 10−5M⊙10^{-5}M_{\odot} in the gaseous inner galactic region is sensitive to dark matter's effective electric and magnetic dipole moments below current direct detection limits.Comment: 8 pages, 4 figure
    • …
    corecore