
Citation: Jin, J.; Zhang, Q.; He, J.; Yu,

H. Quantum Dynamic Optimization

Algorithm for Neural Architecture

Search on Image Classification.

Electronics 2022, 11, 3969. https://

doi.org/10.3390/electronics11233969

Academic Editor: Dimitris Apostolou

Received: 4 November 2022

Accepted: 23 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Quantum Dynamic Optimization Algorithm for Neural
Architecture Search on Image Classification
Jin Jin 1 , Qian Zhang 2, Jia He 3,* and Hongnian Yu 4

1 School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China
2 Active Network (Chengdu) Co., Ltd., Chengdu 610021, China
3 School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
4 School of Computing, School of Engineering and the Built Environment, Edinburgh Napier University,

Edinburgh 16140, UK
* Correspondence: hejia@cuit.edu.cn

Abstract: Deep neural networks have proven to be effective in solving computer vision and natural
language processing problems. To fully leverage its power, manually designed network templates,
i.e., Residual Networks, are introduced to deal with various vision and natural language tasks.
These hand-crafted neural networks rely on a large number of parameters, which are both data-
dependent and laborious. On the other hand, architectures suitable for specific tasks have also grown
exponentially with their size and topology, which prohibits brute force search. To address these
challenges, this paper proposes a quantum dynamic optimization algorithm to find the optimal
structure for a candidate network using Quantum Dynamic Neural Architecture Search (QDNAS).
Specifically, the proposed quantum dynamics optimization algorithm is used to search for meaningful
architectures for vision tasks and dedicated rules to express and explore the search space. The
proposed quantum dynamics optimization algorithm treats the iterative evolution process of the
optimization over time as a quantum dynamic process. The tunneling effect and potential barrier
estimation in quantum mechanics can effectively promote the evolution of the optimization algorithm
to the global optimum. Extensive experiments on four benchmarks demonstrate the effectiveness
of QDNAS, which is consistently better than all baseline methods in image classification tasks.
Furthermore, an in-depth analysis is conducted on the searchable networks that provide inspiration
for the design of other image classification networks.

Keywords: quantum dynamics; global optimization; neural architecture search; image classification

1. Introduction

Deep learning (DL) methods have shown great potential for such applications as
computer vision and natural language processing [1]. Image classification is one of the four
major tasks of computer vision. Given an input image, the image classification task aims to
determine the category of the image [2].

To effectively deal with a classification task, multiple network architectures, i.e.,
ResNet [3], DensNet [4], and SENet [5], have been proposed. These new architectures
have heuristic significance for designing neural networks, such as the residual module in
ResNet, which has now become the basic module in many network architectures.

However, designing DL algorithms requires designers to have rich experiences. It is a
challenging task to design neural network architectures due to the fact that little prior knowl-
edge on architecture design is available and the designed structures are problem-dependent.
In that case, the ability to automatically generate the correct network architecture for any
given task has become a new requirement [6,7]. One way to generate these architectures is
to use evolutionary algorithms (EA) [8]. Traditional topological neuroevolution research is
the exploration of early neural network architecture searches [9,10]. EA uses neural net-
works to simplify search, weighting, structured search, and multi-objective search [11,12].
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Google Research showed that Regular Evolutionary Algorithms (REA) [13] work well in
neural network architecture.

Recent research on the neural network architecture search problem has brought a new
trend in evolutionary neural network architecture search. However, there are two main
challenges: (1) most well-designed new algorithms could not be used for neural network
architecture search [14–16]; and (2) each search algorithm is only experimented on for a
specific search space during the search process and is not verified on other, well-known
search spaces [17,18].

The quantum dynamics optimization algorithm (QDO) is an iterative optimization
algorithm [19] constructed by simulating the optimization process of the quantum dynamics
equation. In the quantum dynamics optimization algorithm, the evolutionary process of the
optimization algorithm over time is transformed into a quantum dynamics process. In the
quantum dynamics optimization algorithm, the modulus of the wave function represents
the distribution of the solution. Therefore, the evolution process is the evolution process of
the optimization algorithm solution. The modulus of the quantum wave function can be
obtained from the ensemble theory in physics, where the probability distribution represents
the probability distribution of the quantum particles in a given state. The tunneling effect,
potential barrier estimation, and other theories in quantum mechanics can effectively
facilitate the optimization process of the optimization algorithm.

Here we explore an application of quantum dynamic optimization algorithms for a
neural architecture search (NAS) problem. In the neural network architecture search prob-
lem, novelty search facilitates the discovery of excellent architectures [20]. The quantum
dynamics optimization algorithm can effectively jump out of the local optimum and find
the global optimum by using the tunnel effect. It is a well-designed intelligent optimization
algorithm. The potential barrier estimation in quantum mechanics can make reasonable
use of the information on non-optimal solutions in the process of algorithm optimization,
thereby increasing the diversity of solutions. In the neural network architecture search
problem, some non-optimal architectures may evolve into optimal architectures after itera-
tion. The properties of these two aspects of the quantum dynamics optimization algorithm
suggest that it may be a better solution to the neural network architecture search problem.

The proposed method is shown in Figure 1. Quantum dynamics optimization algo-
rithms are competitive optimizations proposed in [19]. Recent research primarily focuses
on improving quantum dynamics optimization algorithms [21]. By introducing different
mechanisms, the optimization performance of the algorithm is further improved by improv-
ing the performance of the algorithm. Unlike previous studies, the method in [19] does not
improve the performance of the algorithm for specific optimization tasks. Instead, it uses
the most basic quantum dynamic optimization algorithm (QDO) to explore its application
in neural network architecture research.

The NAS method relies on a search strategy to determine the next architecture to be
evaluated, and a performance evaluation strategy to evaluate its performance [8]. This arti-
cle will focus on search strategies. To evaluate the performance of the search algorithm more
comprehensively, we use table-based NAS benchmarks as the benchmark dataset [22–24].

The contributions of this work can be summarized as follows:

• In addition to conventional evolutionary algorithms, for the first time, this paper
applies a quantum heuristic optimization algorithm as a search algorithm for a neural
network architecture search problem. We transform the applicability of quantum
dynamics optimization algorithms from traditional optimization problems to neural
network architecture search problems. The designed algorithm does not depend on
specific data and is a general neural network architecture search algorithm.

• Reduce the problem search space by defining reasonable discretization encoding
methods, and quantum heuristic rules. The use of the quantum tunneling effect and
barrier estimation principle makes the proposed algorithm more competitive with
general evolutionary methods.
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• Conduct extensive experiments on NAS-Benchmark to demonstrate the effectiveness
of the proposed models.
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We first describe the quantum dynamic optimization algorithm(QDO; Section2), then
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The quantum dynamics optimization algorithm is an iterative optimization algorithm[19],
in which, the evolution of the optimization algorithm over time is transformed into a quan-
tum dynamic process. The theories such as tunneling effect and potential barrier estimation
in quantum mechanics can effectively promote the optimization process of optimization
algorithms.

According to the basic iterative operation of the optimization algorithm under the
quantum dynamics model[26], the basic iterative process can be obtained in Algorithm 1.

All operations of this basic iterative process are obtained by using the theoretical
platform of the quantum dynamics of the optimization algorithm and the approximation
and estimation of the objective function. The specific steps of QDO are as follows.

1. Generate k sampled individuals in the domain [dmin,dmax].
2. The probability evolution of the location distribution of k sampled individuals can

be considered as the evolution of the particle wave function modulus. The larger the
value of k, the closer to the probability distribution of the wave function modulus.
The initial mean square error σ takes the length of the domain. When the initial mean
square error is large, the algorithm is not sensitive to the initial position of the sampled
individual.

3. Generate new solutions with normal distribution x′[i] ∼ N
(
x[i], σ2), if the new

solution f (x′[i]) ≤ f (x[i]), that is, the new solution is better than the old solution,
then the new solution is directly accepted; If the new solution is worse than the old
solution, it can be considered from the physical image that the particle is blocked
by the potential barrier, and the difference solution is accepted according to the
probability that the barrier penetrates the transmission coefficient T in Eq.??

4. This iterative process is repeated until the mean square error of the x[i] positions of
the k sampled individuals is less than or equal to the mean square error of the current
normal sampling.
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We first describe the quantum dynamic optimization algorithm (QDO; Section 2), then
describe how to apply QDO to NAS (Section 3), and then Section 4 verifies the effectiveness
of the search algorithm proposed for table-based benchmarks, such as NAS-Bench-101 [22],
NAS-Bench-1Shot1 [23], NAS-Bench-201 [24], and NSATs-Bench [25].

2. Quantum Dynamic Optimization

The quantum dynamics optimization algorithm is an iterative optimization algo-
rithm [19], in which the evolution of the optimization algorithm is transformed over time
into a quantum dynamic process. The theories such as the tunneling effect and potential
barrier estimation in quantum mechanics can effectively promote the optimization process
of optimization algorithms.

According to the basic iterative operation of the optimization algorithm under the
quantum dynamics model, the basic iterative process can be obtained in Algorithm 1.

Algorithm 1: Pseudocode of QDO.

1 Randomly generate k copies of free particle in the domain [dmin,dmax],
σs=dmax-dmin

2 while (stop condition is not satisfied) do
3 Initialize Ac = 0
4 while (σ < σk) do
5 for i=1 to k do
6 Generate x′[i] ∼ N

(
x[i], σ2)

7 if ( f (x′[i]) ≤ f (x[i])) then
8 x[i] = x′[i], update the ith particle
9 else

10 x[i] = x′[i], update the ith particle according to T ∝ e−
∆x
√

∆ f
σ

11 end
12 end
13 Ac = Ac + 1
14 Calculate the σk for k copies
15 end
16 xworse [i] = xaver[i]
17 σ=σ/2
18 end
19 Output: xbest[i]
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All operations of this basic iterative process are obtained by using the theoretical
platform of the quantum dynamics of the optimization algorithm and the approximation
and estimation of the objective function. The specific steps of QDO are as follows.

1. Generate k sampled individuals in the domain [dmin,dmax].
2. The probability evolution of the location distribution of k sampled individuals can

be considered as the evolution of the particle wave function modulus. The larger the
value of k, the closer to the probability distribution of the wave function modulus.
The initial mean square error σ takes the length of the domain. When the initial mean
square error is large, the algorithm is not sensitive to the initial position of the sampled
individual.

3. Generate new solutions with a normal distribution x′[i] ∼ N
(
x[i], σ2), if the new

solution f (x′[i]) ≤ f (x[i]); that is, the new solution is better than the old solution,
then the new solution is directly accepted; if the new solution is worse than the old
solution, it can be considered from the physical image that the particle is blocked
by the potential barrier, and the difference solution is accepted according to the
probability that the barrier penetrates the transmission coefficient T.

4. This iterative process is repeated until the mean square error of the x[i] positions of
the k sampled individuals is less than or equal to the mean square error of the current
normal sampling.

5. Replacing the worst position with the mean of the sampled individuals x[i], xworse [i] =
xaver [i] reduces the mean square error of normal sampling and enters a smaller scale
to perform the same iterative process.

6. If the algorithm meets the set maximum function evolution times maxFE, the entire
iterative process ends, and the optimal solution xbest [i] among the current k sampled
individuals x[i] is output.

3. Proposed Method
3.1. NAS Problem Black Box Modeling

The principle of NAS is to give a set of candidate neural network structures called the
search space and use a certain strategy. During the search for the optimal network structure,
the pros and cons of the neural network structure are measured via the performance of some
indicators, such as accuracy and speed degree to measure, called performance evaluation.

In the NAS problem, the form of the fitness function is unknown; it belongs to the
black-box optimization problem [26]. It has the characteristics of nonlinearity and non-
convexity, and intelligent optimization algorithms have natural advantages for solving
such problems.

In the neural network architecture search problem, the search space represents and
defines the variables of the optimization problem; that is, it is the basic components of the
problem that need to be optimized, such as convolution size, stride, what kind of pooling,
and the number of layers of the network.

The search strategy specifies the algorithm used to search for the optimal architecture.
These algorithms include: random search [27], Bayesian optimization [28], evolutionary
algorithms [26], reinforcement learning [29], and gradient-based algorithms [30]. Among
them, Google’s reinforcement learning search method was an earlier exploration in 2017.
This paper made architecture search more popular [31], and later research institutions, such
as Uber, OpenAI, and Deepmind, began to apply evolutionary algorithms to this field. NAS
has become a key application of evolutionary computing, and many domestic companies
have also begun the same attempt.

Formally, NAS can be modeled as a black-box optimization problem, as shown in
Equation (1): {

arg minA = L(A,Dtrain ,Dfitness )
s.t. A ∈ A (1)
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whereA represents the search space of the potential neural architecture, and L(·) measures
the fitness evaluation D f itness on the dataset Dtrain. L(·) is usually non-convex and non-
differentiable. s.t. is the abbreviation of subject to (such that), which means to be bound.
In principle, NAS is a complex optimization problem with a series of challenges, such as
complex constraints, discrete representations, two-layer structures, a high computational
cost, and multiple conflicting criteria. A NAS algorithm refers to an optimization algo-
rithm specially designed to efficiently and efficiently solve the problem represented by
Equation (1). The following section will explore the application of the quantum dynamics
optimization algorithm (QDO) in neural network architecture search.

3.2. QDNAS

Recent NAS methods and benchmarks parameterize the unit structure of deep neural
networks into directed graphs. The realization of the unit structure can be seen as assigning
related operations from a set of choices or values, such as selecting the predecessor and
successor of a node in a directed graph or an operator that selects a node.

The selection of the candidate unit structure belongs to the discrete optimization
problem. It can be seen from the basic iterative process of QDO that the basic operation of
QDO is Gaussian sampling in continuous space.

We discretize it, that is, set a function as Equation (2). For example, the value obtained
by sampling [cov3,cov1,maxpool] is [0.8,0.3,0.4], then the discretized value is [1,0,0].

f (x) =
{

1, x > 0.5
0, else

(2)

The algorithm involves the problem of replacing the difference solution with the
mean value, which is explained here with the solution search matrix of NAS-Bench-
101. When NAS-Bench-101 searches, the adjacency matrix is used to encode the net-
work architecture; that is, the sampled particles are the adjacency matrix. Suppose the

two sampled particles are x1=




0.3 0.2 0.4
0.1 0.6 0.3
0.3 0.7 0.2


 and x2=




0.2 0.8 0.3
0.9 0.1 0.4
0.6 0.2 0.1


 , then xaver=




0.25 0.5 0.35
0.5 0.35 0.35
0.45 0.45 0.5


. The final architectural adjacency matrix obtained by the function

discrete(x) is X=




0 1 0
1 0 0
0 0 0


 QDNAS is shown in Algorithm 2. Figure 1 shows the

framework of the algorithm. To demonstrate the performance of the framework, several
state-of-the-art NAS methods are compared in the simulation experiments section.

The specific steps of QDONAS are:

1. Initialize the population, specifying the dataset D to use.
2. Randomly sample the architecture in the search space and assign it to a queue popi.
3. The particles are discretized according to Equation (2).
4. Generate new particle according to POP′i = regularized(POPi + σN(0, 1)).
5. If f (POPi) < f (POP′i ), then POP′i is assigned to POPi. Otherwise, the poor solution is

accepted with a certain probability. In this part, the probability is 0.1. This probability
is selected on the basis of many trials.

6. Replace the worst position with the mean of the sampled individuals popworst =
popaver, and discretize the sampled individuals again.

7. Keep repeating lines 2 to 12 in QDNAS until the maximum number of iterations is
reached.

QDO is a sampling-based method, but the difference from random sampling is that
QDO can effectively use the information from the previous generation of individuals. QDO
introduces a Gaussian distribution in the sampling process. The probability of a Gaussian
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distribution in the range of σ is 65.26%, and the probability of falling into the range of
3σ is 99.74%. In other words, the particles will move to the vicinity of the better solution
with a small step length, which ensures the mining of the algorithm. At the same time, in
order to ensure the diversity of the population, the difference is accepted with a certain
probability to ensure the diversity of the population. At the end of the iteration of each
group, a certain perturbation mechanism is introduced through mean replacement to avoid
premature stagnation of the algorithm.

Algorithm 2: Pseudocode of QDNAS.

1 Input: f :NAS problem with evaluation,D:The reference dataset,k:Population size
2 Output: Best architecture.
3 while (stop condition is not satisfied) do
4 for i = 1 to k do
5 popi ← random_con f iguration()
6 POPi ← discretized_architecture()
7 fi ← evaluatearchitecture(POPi)
8 Generate POP′i for POPi to POP′i = regularized(POPi + σN(0, 1))
9 if ( f (POP′i ) < f (POPi)) then

10 POPi = POP′i , update the ith particle
11 else
12 POPi = POP′i , update the ith particle according to T
13 end
14 end
15 end
16 POPworst=POPaver
17 Output:POPbest

The pipeline of our method is shown in Figure 1. Initialization is performed first, the
initial population is uniformly sampled, and the initial population is discretized. That is,
discretization is performed with 0.5 as the threshold. Each individual obtains an initial
structure through decoding. We evaluate these structures and record the evaluation results
as the fitness value of the individual. We choose the better individual as the next generation
and accept the difference with a certain probability. We generate new individuals with a
Gaussian distribution around the current individual. We judge whether the termination
condition is met; if it is met, the loop ends; if it is not met, the loop will continue.

4. Experiments

We verified the performance of QDNAS in four recent NAS benchmark tests, NAS-
Bench-101, NATs-Bench, NAS-Bench-1shot1, and NAS-Bench-201. Different articles use
different hyperparameters/data enhancement/regularization/etc. when retraining the
searched network structure. Using NAS-Bench can make a fair comparison of each NAS
algorithm.

For the image classification task, this paper chooses the default dataset Cifar-10 of
NAS-Bench. The CIFAR-10 dataset has a total of 6 × 104 color images, and the size of these
images is 32 × 32, divided into 10 non-overlapping classes. During an architecture search,
the training dataset uses CIFAR-10, and the final search network is a network suitable for
image classification.

The benchmark test algorithm is Random Search (RS) [27], Tree-Structured Parzen
Estimator (TPE) [8], and Regularized Evolution Algorithm (REA) [32]. The experimental
parameters are set to NP = 40 and the transmission coefficient is 0.1. Among these algo-
rithms, REA is the preferred benchmarking algorithm, first because REA and QDO are both
heuristic algorithms and secondly, because REA has demonstrated excellent performance
in past work. For each algorithm, we conduct 500 independent experiments and record the
mean performance of the immediate validation regret.
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4.1. Nas-Bench-101

The NAS-Bench-101 dataset contains 423k samples, mapping the model structure to
the corresponding index (run time and accuracy) traverses the entire search space, making
it possible to perform complex analysis on the entire search space.

NAS-Bench-101: The dataset table contains the CNN structure and corresponding
training/evaluation indicators using Cell coding. The dataset is Cifar-10 (40k training/10k
verification/10k test). Each model was repeatedly trained and evaluated three times under
four types of Epochs Estop ∈

{
Emax

33 , Emax
32 , Emax

31 , Emax

}
= {4, 12, 36, 108}. The indicators

used in NASBench101 are: training accuracy, validation accuracy, testing accuracy, number
of parameters, and training time.

Figures 2 and 3 show the performance of the search algorithm QDO. Figure 2 shows
the trajectory of test accuracy and verification accuracy in 10 tests. Red represents the
verification accuracy, and blue represents the test accuracy. It can be seen from the figure
that for Random search, the curve is more scattered, which means that the results of each
run are quite different, indicating that the randomness is strong. Regarding the regular
evolutionary algorithm, this problem has been improved to a certain extent, but it still has
a certain degree of randomness. The QDO algorithm verification accuracy rate is relatively
concentrated, indicating that the algorithm is robust. However, only two test accuracy rates
have large deviations. Furthermore, in the visualization of Figure 2, the comparison of the
three can be seen.
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Figure 2. Search trajectories of Random search, REA, and QDO on NAS-Bench-101.

4.2. Nas-Bench-201

NAS-Bench-201 has trained more than 15,000 neural networks on three datasets
(CIFAR-10, CIFAR-100, and ImageNet-16-120) based on different random number seeds and
different hyperparameters many times. It provides the training and testing time after each
training epoch, the loss function and accuracy of the model in the training set/validation
set/test set, model parameters after training, model size, model calculation amount, and
other important information. With NAS-Bench-201, every NAS algorithm can be compared
fairly. Different articles use different hyperparameters/data enhancement/regulations/etc.
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when retraining the searched network structure. Using the NAS-Bench-201 API, each
researcher can fairly compare the searched network structure.
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Figures 4 and 5 show the comparative performance of the algorithms. From the
comparative performance analysis of the four algorithms, it can be seen that in 10 test
experiments, the random search algorithm is more random, and the accuracy of each search
changes greatly.

Figure 4. Search trajectories of Random search, REA, and QDO on NAS-Bench-201.
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Figure 6 shows the instant validation regret after 500 independent runs. From the
results, we can see that for Cifar10, we conclude that even though TPE is better than other
algorithms at the beginning it is much slower when approaching the global optimum. The
test regrets of DE and RE are almost the same, while RS has shown excellent convergence
performance after recovering from the misleading early assessment, and its convergence
speed is faster than other algorithms.
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4.3. Nas-Bench-1shot1

NAS-Bench-1shot1 modifies the cell-level topology based on NAS-Bench-101 while
keeping the network-level topology unchanged. NAS-Bench-1shot1 makes the NAS ap-
proach more practical. It defines three search spaces that are convenient for the weight-
sharing algorithm to use: search space 1, search space 2, and search space 3. The number of
schemas available for searching are 6240, 29160, and 363648.

It can be seen from Figure 7 that RS has better performance in the initial search stage,
the reason may be that a better architecture is randomly searched, and when the iteration
time is around the point of 2500, REA and QDO are better due to the algorithm itself
having a better search mechanism, so it quickly locks in a better search area. When the
time is 2700, QDO shows an overwhelming advantage, and the accuracy of the searched
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architecture is higher. As the iteration progresses, the performance of several algorithms on
the NAS-Bench-1Shot1 test set gradually tends to be the same.

Figure 8 shows the immediate test regret after 500 independent runs. It can be seen
from the results that both RS and REA performed better in the initial stage, but the QDO
algorithm performed better in the later stage, and TPE performed better in the middle stage,
but there was premature stagnation. The performance of the QDO algorithm is average
in the early stage, but there is a rapid convergence in the later stage. The REA algorithm
outperforms other algorithms in the later architecture search.
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4.4. NATs-Bench

NATs-Bench is based on NAS-Bench201, which expands the NAS-Bench201 dataset
into three, namely CIFAR10, CIFAR100, and ImageNet-16-120. NATS Bench includes
15,625 candidate neurons in the three datasets. Among them, the topological search space
St is applicable to all NAS methods and the size of the search space Ss complements the
lack of architecture size analysis. The average convergence curves of the four algorithms
on the NATs-Bench test set are shown in Figure 9. From the visual analysis of the average
convergence curve, it is known that QDO and REA have better robustness.



Electronics 2022, 11, 3969 11 of 13

Electronics 2022, 1, 0 11 of 14

Figure 9. Compare the mean test accuracy along with error bars.

candidate neurons on the three datasets. Architecture topology and 32768 architecture
size search space. Among them, the topological search space St is applicable to all NAS
methods, and the size search space Ss complements the lack of architecture size analysis.
The average convergence curves of the four algorithms on the NATs-Bench test set are
shown in Figure 9. From the visual analysis of the average convergence curve, it is known
that QDO and REA have better robustness.

4.5. Results discussion

Record the statistical results of the experimental data of the QDO algorithm as shown
in the table, in which the table 1 records the experiments of the benchmark algorithm in the
NAS-Bench-101, NAS-Bench-201 and NAS-Bench-1Shot1 test sets result. The bold words in
the table indicate the top ranking. From the experimental results, on the Cifar10 classifica-
tion data set, the optimal architecture searched by the QDO algorithm on NAS-Bench-101
is 0.003 higher than the accuracy rate of RS and REA, while in NAS -Excellent results were
also obtained on Bench-210 and NAS-Bench-1Shot1. REA is a baseline algorithm proposed
by the Google AI research team. It is proved that QDO is competitive in architecture search
problem.

Table 1. Statistical experimental results on different NAS-Bench on Cifar10 dataset
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measure of whether the NAS algorithm is good. Since REA and QDO performed better in
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4.5. Results Discussion

We record the statistical results of the experimental data of the QDO algorithm, as
shown in the table, in which Table 1 records the experiments of the benchmark algorithm
for the NAS-Bench-101, NAS-Bench-201, and NAS-Bench-1Shot1 test sets results. The
bold words in the table indicate the top ranking. From the experimental results, on the
Cifar10 classification dataset; the optimal architecture searched by the QDO algorithm
on NAS-Bench-101 is 0.003 higher than the accuracy rate of RS and REA, while in NAS,
excellent results were also obtained on Bench-210 and NAS-Bench-1Shot1. REA is a baseline
algorithm proposed by the Google AI research team. It is proven that QDO is competitive
in architecture search problems.

Table 1. Statistical experimental results for NAS-Bench on the Cifar10 dataset.

NAS-101 NAS-201 NAS-1Shot1

RS 0.940 0.939 0.946
TPE 0.933 0.936 0.947
RE 0.940 0.940 0.947

Ours 0.943 0.942 0.947

In addition to the optimization performance, robustness is also an important factor.
Whether the algorithm is sensitive to randomness during training and searching is also a
measure of whether the NAS algorithm is good. Since REA and QDO performed better in
the previous experiments, this part of the experiment only compares the REA and QDO
algorithms. Figure 10 is the empirical cumulative distribution of the final test regret after
500 runs of REA and QDO. Based on the robust performance ratios of REA and DE on
different test sets in the figure, it can be seen that the robustness of the QDO algorithm on
NAS-Bench-101 is significantly better than that of the REA algorithm, while on the other
three datasets, the two algorithms’ robustness differs little.
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the previous experiments. Therefore, this part of the experiment only compares the REA
and QDO algorithms. Figure 11 is the empirical cumulative distribution of the final test
regret after 500 runs of REA and QDO. Based on the robust performance ratios of REA
and DE on different test sets in the figure, it can be seen that the robustness of the QDO
algorithm on NAS-Bench-101 is significantly better than that of the REA algorithm, while
on the other three datasets, the two algorithms the robustness differs little.

5. Conclusion

We proved that the quantum dynamics optimization algorithm can be used for neural
network architecture search. The quantum dynamics optimization algorithm is a sampling-
based algorithm. Due to the quantum tunneling effect, it has advantages in dealing with
mixed data types and high-dimensional optimization problems. Therefore, QDO may be a
good candidate for NAS, which may help discover novel but unknown architectures. Since
the quantum dynamics optimization algorithm has natural parallelism, we will explore the
parallel implementation of the algorithm in the architecture search in the future.

First, perform classification recognition on the CIFAR-10 image classification data
sets. It should be noted here that by adjusting the core size and number of channels of the
convolutional layer and pooling layer, the algorithm can be easily applied to other fields.
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5. Conclusions

We proved that the quantum dynamics optimization algorithm can be used for a neural
network architecture search. The quantum dynamics optimization algorithm is a sampling-
based algorithm. Due to the quantum tunneling effect, it has advantages in dealing with
mixed data types and high-dimensional optimization problems. Therefore, QDO may be a
good candidate for NAS, which may help discover novel but unknown architectures. Since
the quantum dynamics optimization algorithm has a natural parallelism, we will explore
the parallel implementation of the algorithm in the architecture search in the future.

First, we performed classification recognition on the CIFAR-10 image classification
dataset. It should be noted here that by adjusting the core size and number of channels of
the convolutional and pooling layers, the algorithm can be easily applied to other fields.

Author Contributions: Conceptualization, Q.Z. and H.Y.; methodology, J.J.; formal analysis, J.H.
All authors have read and agreed to the published version of the manuscript.

Funding: Project of Sichuan Science and Technology Department (2021Z005).

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to Sichuan Intelligent Tolerance Design and Testing Engineering Re-
search Center.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Yin, D.; Gontijo Lopes, R.; Shlens, J.; Cubuk, E.D.; Gilmer, J. A fourier perspective on model robustness in computer vision. Adv.

Neural Inf. Process. Syst. 2019, 32, 13276–13286.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
4. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
5. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
6. Guo, Y.; Luo, Y.; He, Z.; Huang, J.; Chen, J. Hierarchical neural architecture search for single image super-resolution. IEEE Signal

Process. Lett. 2020, 27, 1255–1259. [CrossRef]

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/LSP.2020.3003517


Electronics 2022, 11, 3969 13 of 13

7. Wang, Y.; Liu, Y.; Dai, W.; Li, C.; Zou, J.; Xiong, H. Learning Latent Architectural Distribution in Differentiable Neural Architecture
Search via Variational Information Maximization. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, QC, Canada, 10–17 October 2021; pp. 12312–12321.

8. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
9. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol.

Comput. 2019, 24, 394–407. [CrossRef]
10. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.

[CrossRef] [PubMed]
11. Sun, J.D.; Yao, C.; Liu, J.; Liu, W.; Yu, Z.K. GNAS-U 2 Net: A New Optic Cup and Optic Disc Segmentation Architecture With

Genetic Neural Architecture Search. IEEE Signal Process. Lett. 2022, 29, 697–701. [CrossRef]
12. Gong, M.; Liu, J.; Qin, A.K.; Zhao, K.; Tan, K.C. Evolving deep neural networks via cooperative coevolution with backpropagation.

IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 420–434. [CrossRef]
13. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-scale evolution of image classifiers.

In Proceedings of the International Conference on Machine Learning. PMLR, Sydney, NSW, Australia, 6–11 August 2017;
pp. 2902–2911.

14. Niu, R.; Li, H.; Zhang, Y.; Kang, Y. Neural Architecture Search Based on Particle Swarm Optimization. In Proceedings of the
2019 3rd International Conference on Data Science and Business Analytics (ICDSBA), Istanbul, Turkey, 11–12 October 2019;
pp. 319–324.

15. Xie, L.; Yuille, A. Genetic cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 1379–1388.

16. Junior, F.E.F.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol.
Comput. 2019, 49, 62–74. [CrossRef]

17. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Lv, J. Automatically designing CNN architectures using the genetic algorithm for image
classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [CrossRef] [PubMed]

18. Xue, Y.; Wang, Y.; Liang, J.; Slowik, A. A self-adaptive mutation neural architecture search algorithm based on blocks. IEEE
Comput. Intell. Mag. 2021, 16, 67–78. [CrossRef]

19. Wang, P.; Xin, G.; Jiao, Y. Quantum Dynamics Interpretation of Black-box Optimization. arXiv2021, arXiv:2106.13927.
20. Zhang, M.; Li, H.; Pan, S.; Liu, T.; Su, S.W. One-Shot Neural Architecture Search via Novelty Driven Sampling. In Proceedings of

the IJCAI, Yokohama, Japan, 11–17 July 2020; pp. 3188–3194.
21. Jin, J.; Wang, P. Multiscale Quantum Harmonic Oscillator Algorithm with Guiding Information for Single Objective Optimization.

Swarm Evol. Comput. 2021, 65, 100916. [CrossRef]
22. Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy, K.; Hutter, F. Nas-bench-101: Towards reproducible neural architecture

search. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019;
pp. 7105–7114.

23. Zela, A.; Siems, J.; Hutter, F. Nas-bench-1shot1: Benchmarking and dissecting one-shot neural architecture search. arXiv 2020,
arXiv:2001.10422.

24. Dong, X.; Yang, Y. Nas-bench-201: Extending the scope of reproducible neural architecture search. arXiv 2020, arXiv:2001.00326.
25. Dong, X.; Liu, L.; Musial, K.; Gabrys, B. Nats-bench: Benchmarking nas algorithms for architecture topology and size. IEEE Trans.

Pattern Anal. Mach. Intell. 2021, 44, 3634–3646. [CrossRef] [PubMed]
26. Liu, Y.; Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Tan, K.C. A survey on evolutionary neural architecture search. IEEE Trans. Neural

Netw. Learn. Syst. 2021. 1–21. [CrossRef] [PubMed]
27. Li, L.; Talwalkar, A. Random search and reproducibility for neural architecture search. In Proceedings of the Uncertainty in

Artificial Intelligence. PMLR, virtual online, 3–6 August 2020; pp. 367–377.
28. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; Xing, E.P. Neural architecture search with bayesian optimisation and

optimal transport. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal,
Canada, 3–8 December 2018; pp. 2020–2029

29. Chen, Y.; Meng, G.; Zhang, Q.; Xiang, S.; Huang, C.; Mu, L.; Wang, X. Renas: Reinforced evolutionary neural architecture search.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 4787–4796.

30. Santra, S.; Hsieh, J.W.; Lin, C.F. Gradient descent effects on differential neural architecture search: A survey. IEEE Access 2021,
9, 89602–89618. [CrossRef]

31. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.
32. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. In Proceedings of the

AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4780–4789.

http://dx.doi.org/10.1109/TEVC.2019.2916183
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173
http://dx.doi.org/10.1109/LSP.2022.3151549
http://dx.doi.org/10.1109/TNNLS.2020.2978857
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1109/TCYB.2020.2983860
http://www.ncbi.nlm.nih.gov/pubmed/32324588
http://dx.doi.org/10.1109/MCI.2021.3084435
http://dx.doi.org/10.1016/j.swevo.2021.100916
http://dx.doi.org/10.1109/TPAMI.2021.3054824
http://www.ncbi.nlm.nih.gov/pubmed/33497330
http://dx.doi.org/10.1109/TNNLS.2021.3100554
http://www.ncbi.nlm.nih.gov/pubmed/34357870
http://dx.doi.org/10.1109/ACCESS.2021.3090918

	Introduction
	Quantum Dynamic Optimization
	Proposed Method
	NAS Problem Black Box Modeling
	QDNAS

	Experiments
	Nas-Bench-101
	Nas-Bench-201
	Nas-Bench-1shot1
	NATs-Bench
	Results Discussion

	Conclusions
	References

