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Tuberous Sclerosis Complex Protein 2-Independent Activation of
mTORC1 by Human Cytomegalovirus pUL38

Yadan Bai,a,b Baoqin Xuan,b Haiyan Liu,a Jin Zhong,c Dong Yu,d* Zhikang Qianb

Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Chinaa; Unit of Herpesvirus and Molecular
Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Xuhui District, Shanghai, Chinab; Unit of Viral
Hepatitis, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Xuhui District, Shanghai, Chinac; Department
of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USAd

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) controls cell growth and anabolic metabolism and is a critical host
factor activated by human cytomegalovirus (HCMV) for successful infection. The multifunctional HCMV protein pUL38 previ-
ously has been reported to activate mTORC1 by binding to and antagonizing tuberous sclerosis complex protein 2 (TSC2) (J. N.
Moorman et al., Cell Host Microbe 3:253–262, 2008, http://dx.doi.org/10.1016/j.chom.2008.03.002). pUL38 also plays a role in
blocking endoplasmic reticulum stress-induced cell death during HCMV infection. In this study, we showed that a mutant
pUL38 lacking the N-terminal 24 amino acids (pHA-UL3825–331) was fully functional in suppressing cell death during infection.
Interestingly, pHA-UL3825–331 lost the ability to interact with TSC2 but retained the ability to activate mTORC1, although to a
lesser extent than full-length pHA-UL38. Recombinant virus expressing pHA-UL3825–331 replicated with �10-fold less efficiency
than the wild-type virus at a low multiplicity of infection (MOI), but it grew similarly well at a high MOI, suggesting an MOI-
dependent importance of pUL38-TSC2 interaction in supporting virus propagation. Site-directed mutational analysis identified
a TQ motif at amino acid residues 23 and 24 as critical for pUL38 interaction with TSC2. Importantly, when expressed in isola-
tion, the TQ/AA substitution mutant pHA-UL38 TQ/AA was capable of activating mTORC1 just like pHA-UL3825–331. We also
created TSC2-null U373-MG cell lines by CRISPR genome editing and showed that pUL38 was capable of further increasing
mTORC1 activity in TSC2-null cells. Therefore, this study identified the residues important for pUL38-TSC2 interaction and
demonstrated that pUL38 can activate mTORC1 in both TSC2-dependent and -independent manners.

IMPORTANCE

HCMV, like other viruses, depends exclusively on its host cell to propagate. Therefore, it has developed methods to protect against host
stress responses and to usurp cellular processes to complete its life cycle. mTORC1 is believed to be important for virus replication, and
HCMV maintains high mTORC1 activity despite the stressful cellular environment associated with infection. mTORC1 inhibitors sup-
pressed HCMV replication in vitro and reduced the incidence of HCMV reactivation in transplant recipients. We demonstrated that
mTORC1 was activated by HCMV protein pUL38 in both TSC2-dependent and TSC2-independent manners. The pUL38-independent
mode of mTORC1 activation also has been reported. These novel findings suggest the evolution of sophisticated approaches whereby
HCMV activates mTORC1, indicating its importance in the biology and pathogenesis of HCMV.

Human cytomegalovirus (HCMV) is a member of the betaher-
pesvirus family with broad cell tropism. It is capable of escap-

ing the immune surveillance and persists as a lifelong latent and
recurrent infection in the host (1, 2). HCMV infection in adults
and healthy people normally is asymptomatic or causes mild ill-
ness, but it can cause severe and life-threatening diseases in im-
munocompromised individuals, and importantly, HCMV con-
genital infection is a leading cause of birth defects (3).

Viruses consist of lipid-enveloped or unenveloped protein
shells and encapsulated genomes but lack the metabolic enzymes
or cellular machineries needed to complete their life cycle. Thus,
successful virus replication relies exclusively on their ability to
manipulate and exploit host cell processes and resources. The
mammalian target of rapamycin complex 1 (mTORC1), which
plays a central role in the regulation of protein translation and
anabolic metabolism, is a major target of virus manipulation. Vi-
ruses have evolved diverse mechanisms to activate this important
cellular pathway by targeting mTORC1 or its up- or downstream
components (4, 5). For example, adenovirus E4 open reading
frame 1 (6, 7) and EBV LMP2A (8) stimulate phosphoinositide

3-kinase (PI3K) signaling and subsequently activate mTORC1.
The M-T5 protein of rabbit myxoma virus activates Akt (9), an
mTORC1-positive regulator downstream of PI3K, while herpes
simplex virus US3 mimics Akt to activate mTORC1 (10) and
HCMV immediate-early proteins activate PI3K and Akt (11). Ad-
enovirus E4 ORF4 (7) may activate mTORC1 directly via a mech-
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anism dependent on phosphatase 2A binding. Some RNA viruses
and the small DNA virus simian virus 40 (SV40), however, affect
phosphorylation of the mTORC1 substrate 4E-BP1 (4, 5, 12),
while human papillomavirus (HPV) protein E6 (13) and HCMV
pUL38 (14) bind to and inhibit tuberous sclerosis complex pro-
tein 2 (TSC2) to activate mTORC1.

TSC2 is a major component of the tuberous sclerosis complex
(TSC), consisting of TSC1 (hamartin), TSC2, and TBC1D7
(TBC1 domain family, member 7) (15–17). TSC is located down-
stream of Akt and functions as a GTPase-activating protein to-
ward Rheb (Ras homolog enriched in brain) (15, 16, 18, 19). En-
zymatically activated Rheb GTPase converts its bound GTP to
GDP and downregulates mTORC1 activity. Therefore, TSC func-
tions as a negative regulator of mTORC1. Many cellular stresses
activate TSC, resulting in inhibition of mTORC1 activity. How-
ever, HCMV has been reported to maintain mTORC1 activation
regardless of cell stress (20–22). Binding of the viral protein
pUL38 to TSC2 and subsequent antagonism of TSC2 function
represents one possible mechanism (14).

HCMV UL38 is located within the intron of the UL37 gene and
is specific to betaherpesviruses (23). It has equivalents in human
herpesvirus 6 and human herpesvirus 7, and UL38-homologous
genes are carried by cytomegaloviruses of other species (24–27).
The UL38 gene product pUL38 is a multifunctional protein that
regulates viral and host gene expression and, in collaboration with
other viral proteins pUL29/28 (28, 29), acts as an antiapoptotic
molecule during HCMV infection (23, 30), interacts with TSC2,
and activates mTORC1 (14). However, the mechanisms whereby
pUL38 interacts with TSC2 to activate mTORC1 are unclear. We
previously showed that the N-terminal 239 residues of pUL38
were necessary and sufficient to block premature cell death but
were unable to activate mTORC1 in isolation, demonstrating that
cell death inhibition by pUL38 was independent of its mTORC1
activation domain (31). In the present study, we further defined
the TSC2-binding motif of pUL38 and showed that a TSC2-bind-
ing-deficient pUL38 mutant still was able to activate mTORC1.
These new findings indicate that HCMV has evolved sophisticated
mechanisms to maintain mTORC1 activation during infection,
which may be essential for the successful completion of the virus
life cycle.

MATERIALS AND METHODS
Plasmids and reagents. LentiCRISPR (plasmid 49535; Addgene) is a len-
tiviral vector expressing cas9 and single guide RNA (sgRNA) (32). The
following lentiviral overexpression vectors were derived from
pLKO.DCMV.tetO (33). pLKO-HA-UL38, expressing the UL38 open
reading frame, and pLKO-HA-UL3825–331, expressing a pUL38 segment
from amino acid 25 to amino acid 331, both carried a hemagglutinin (HA)
epitope at their amino termini. pLKO-Flag-UL38 and pLKO-Flag-
UL3825–331 both carried a 3� Flag tag at their N termini. Each pair of
amino acids between amino acids 13 and 24 of pUL38 were mutated to
alanine by overlapping PCR and cloned into pLKO.DCMV.tetO vector,
namely, pLKO-HA-UL38 SL/AA, pLKO-HA-UL38 LD/AA, pLKO-HA-
UL38 E/A, pLKO-HA-UL38 EW/AA, pLKO-HA-UL38 RQ/AA, and
pLKO-HA-UL38 TQ/AA. Primers for introducing these mutations are
listed in Table 1. pLKO-Flag-GFP expressed the green fluorescent protein
(GFP) gene with a 3� Flag tag at its N terminus. pLKO-TSC2 expressed
the TSC2 consensus coding sequence (CDS), and pLKO-Flag-TSC2 ex-
pressed TSC2 with a 3� Flag tag at its N terminus.

Primary antibodies used in the present study included anti-actin
(AC15; Abcam); anti-immediate-early protein IE1/2 (a generous gift from
Jay Nelson, Oregon Health & Science University); anti-IE1 (23), anti-
pUL38 (23), anti-pp28 (34), and anti-pp71 (35) (gifts from Thomas
Shenk, Princeton University); anti-ribosomal S6 kinase (S6K) (Protein-
tech); anti-cleaved poly(ADP-ribose) polymerase (PARP) (Cell Signal-
ing); anti-phosphorylated S6K (Thr-389) (Cell Signaling); anti-HA and
anti-Flag (Abmart); anti-TSC2 (1824-1; Abcam); and anti-TSC1 (4906;
Cell Signaling).

Viruses and cell lines. Primary human foreskin fibroblasts (HF), hu-
man glioblastoma-astrocytoma cell line U373-MG (kindly provided by
James Alwine, University of Pennsylvania), and HEK293T cells were
maintained at 37°C in Dulbecco’s modified Eagle’s medium supple-
mented with 10% fetal bovine serum (FBS). HEK293T cells were trans-
fected with the indicated plasmid together with the packaging plasmids
9.2�R and VSV-G to produce lentivirus stocks. HF cells or U373-MG cells
were transduced with lentivirus supplemented with 5 �g/ml Polybrene
and selected with 2 �g/ml puromycin (Sigma-Aldrich) to generate a pool
of cells expressing the protein of interest.

Bacterial artificial chromosome (BAC)-HCMV clones were created
and used to make recombinant HCMV. HA-UL38, HA-UL3812–331, HA-
UL3825–331, and HA-UL3835–331 were amplified by PCR, and we inserted
them into the BAC pAD-GFP to replace the full-length UL38 by linear
recombination in the bacterial strain SW105 as previously reported (36).
The primers used for linear recombination are available upon request.

TABLE 1 Primers used to introduce mutations into the UL38 coding sequence

Mutant type Primer sequencea

SL/AA 5=-CCACTCGGCCTCGTCCAGCGCGGCCATGATAGCGGCAGTGCTATG-3=
5=-GCCGCGCTGGACGAGGCCGAGTGG-3=

LD/AA 5=-TCTGTCGCCACTCGGCCTCGGCCGCCAGGCTCATGATAGCGGCA-3=
5=-GCGGCCGAGGCCGAGTGGCGACAGA-3=

E/A 5=-GCGTCTGTCGCCACTCGGCCGCGTCCAGCAGGCTCATGATAGC-3=
5=-GCGGCCGAGTGGCGACAGACGC-3=

EW/AA 5=-CGTCCATCTGCGTCTGTCGCGCCGCGGCCTCGTCCAGCAGGC-3=
5=-GCGGCGCGACAGACGCAGATGGACG-3=

RQ/AA 5=-CCCCCACGTCCATCTGCGTCGCTGCCCACTCGGCCTCGTCCA-3=
5=-GCAGCGACGCAGATGGACGTGGGGG-3=

TQ/AA 5=-TCAGTCCCCCCACGTCCATCGCCGCCTGTCGCCACTCGGCCT-3=
5=-GCGGCGATGGACGTGGGGGGACTGA-3=

a Underlined letters indicate nucleotide substitutions introduced into the UL38 coding sequence.
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pADinHA-UL38, pADtrunHA-UL3812–331, pADtrunHA-UL3825–331,
and pADtrunHA-UL3835–331 were used to reconstitute ADinHA-UL38,
ADtrun HA-UL3812–331, ADtrun HA-UL3825–331, and ADtrunHA-
UL3835–331 mutant viruses in which the N-terminal amino acid residues
of pUL38 were deleted as indicated. pAD-GFP was used to produce wild-
type virus (ADwt), and pADpmUL38, a recombinant BAC derived from
pAD-GFP in which the expression of pUL38 was disrupted, was used to
produce ADpmUL38 as previously reported (23, 30).

To reconstitute the virus, 2 �g of the BAC DNA and 1 �g of the pp71-
overexpressing plasmid were transfected into HF cells as described previously
(37). Twenty-four hours later, culture medium was replaced. The superna-
tant was collected when �100% of the cell monolayer was lysed.

Viral growth analysis. HF cells or HF cells expressing a protein of inter-
est were seeded in 12-well plates overnight, and cells were incubated with
recombinant HCMV for 1 h at an MOI of 0.01 or 3. The inoculum was
removed, the monolayer was washed with phosphate-buffered saline (PBS),
and fresh medium was added. Medium from infected cells was harvested at
the indicated times. The virus titer was determined by 50% tissue culture
infectious dose (TCID50) assay in HF or HF-HA-UL38 cells.

Protein analysis. Proteins were analyzed by immunoblotting as pre-
viously described (30). Briefly, cells were washed with phosphate-buffered
saline (PBS) and lysed in the protein sample buffer supplemented with
protease inhibitor cocktails (PIC; Roche) and phosphatase inhibitor cock-
tail IV (PHIC; BioVision, Inc.). Proteins were resolved by electrophoresis
and transferred to a polyvinylidene difluoride membrane, and then they
were hybridized with primary antibodies and horseradish peroxidase-
conjugated secondary antibodies and visualized by using enhanced
chemiluminescence (ECL) reagents (Bio-Rad).

Immunoprecipitation. Immunoprecipitations were done either in
HF cells infected with HCMV at an MOI of 3 at 72 hpi or in HEK293T cells
transfected with plasmids of interest. Cell samples were lysed in lysis buf-
fer, containing 120 mM NaCl, 40 mM HEPES, 1 mM EDTA, 0.3% 3-[(3-
cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS),
PIC, and PhIC, for 1 h and centrifuged at 16,000 � g for 15 min at 4°C. The
supernatants were incubated with Flag antibody-conjugated beads (Sig-
ma-Aldrich) for 1 h at room temperature in rotation, washed with wash
buffer (120 mM NaCl, 40 mM HEPES, 1 mM EDTA, 0.3% CHAPS), and
eluted with 200 �g/ml flag peptide. The eluents were analyzed by immu-
noblotting.

Assays for mTORC1 activation. Immunoblotting of phosphorylated
S6K was used in this study as the readout for mTORC1 activation. To
determine mTORC1 activation in infected cells, HF cells were infected
with various HCMV at an MOI of 3 and collected at various hours postin-
fection for immunoblot analysis. To determine mTORC1 activation in
expressing cells, HF cells or U373-MG cells overexpressing proteins of
interest were serum starved for 72 h or 48 h, respectively. Cell lysates were
collected for immunoblot analysis.

shRNA-mediated TSC2 knockdown in HF cells. The control (shCtrl)
short hairpin RNA (shRNA) and TSC2-targeting shRNA (shTSC2-1 or
shTSC2-2) expressing lentiviral vectors were constructed based on the
PLKO.1 vector. The shRNA targeting sequences are 5=-CAA CAA GAT GAA
GAG CAC CAA-3= (shCtrl), 5=-CAA TGA GTC ACA GTC CTT TGA-3=
(shTSC2-1), and 5=-GGA TTA CCC TTC CAA CGA AGA-3= (shTSC2-2).
Lentivirus preparation and transduction were the same as those described
above for viruses and cell lines. Pools of HF cells stably expressing the respec-
tive shRNAs were used as control or TSC2 knockdown cells.

Generation of TSC2 knockout U373-MG cell lines. Genome-engi-
neering experiments using the CRISPR-Cas9 system were performed as
described previously (38). Briefly, two sgRNAs targeting TSC2 were
cloned into lentiCRISPR vector. Lentivirus was produced in HEK293T
cells. U373-MG cells were transduced with lentivirus and selected with 2
�g/ml puromycin. TSC2 knockout cell clones were isolated by limited
serial dilution. Finally, TSC2 knockout cell clones were confirmed by se-
quencing and immunoblot analysis. The sgRNA sequences targeting

TSC2 were 5=-CAC CGT GGC CTC AAC AAT CGC ATC-3= (site 1) and
5=-CAC CGA GCA CGC AGT GGA AGC ACT C-3= (site 2) (32).

RESULTS
Construction and analysis of serial N-terminal-truncated mu-
tants of HCMV pUL38. We previously identified the domains or
motifs responsible for the distinct activities of HCMV protein
pUL38 by mutagenesis (31). Deletion of the first 56 residues was
associated with rapid degradation of the protein, making it hard to
dissect the structural and functional relationships of this region.
Therefore, we generated mutant viruses expressing small, serial
N-terminal deletions of pUL38, with the aim of obtaining stable
mutant proteins with altered functions in the context of HCMV
infection. Mutations were introduced into the virus genome using
a bacterial artificial chromosome (BAC) recombineering tech-
nique (36). Recombinant virus ADinHA-UL38 carried the entire
UL38 open reading frame (ORF) with an HA tag on its N termi-
nus, ADtrunHA-UL3812–331 carried the UL38 ORF lacking the 11
N-terminal amino acids, ADtrunHA-UL3825–331 carried the UL38
ORF lacking the 24 N-terminal amino acids, and ADtrunHA-
UL3835–331 carried the UL38 ORF lacking the 34 N-terminal
amino acids. All of the truncated variants of pUL38 were tagged
with HA at their N termini to facilitate protein detection. The
parental HCMV-BAC clone pAD-GFP, derived from the HCMV
AD169 strain (23), was used to produce wild-type virus (ADwt),
which was used as a positive control. The integrity of the recom-
binant BAC clones was examined by digestion with EcoRI and
BamHI (Fig. 1A and B). The digestion patterns were consistent
with the predictions, indicating that the recombinant BAC clones
carried the intact viral genome and the precise modifications at
the correct loci.

The recombinant viruses were reconstituted, and multistep viral
growth assays were performed to detect the effects of the serial pUL38
N-terminal truncations on viral growth. ADinHA-UL38 and
ADtrunHA-UL3812–331 replication was similar to that of the wild-
type virus, ADwt (Fig. 1C). However, ADtrunHA-UL3825–331 repli-
cation was about 10-fold lower than that of the wild-type virus, and
replication was almost absent from ADtrunHA-UL3835–331. The
growth defect of ADtrunHA-UL3825–331 and the wild-type replica-
tion kinetics of ADtrunHA-UL3812–331 indicated the importance of
amino acids 12 to 24. In addition, the dramatic growth defect of
ADtrunHA-UL3835–331 suggested that this variant lost pUL38 func-
tion and that amino acids 25 to 34 were necessary for functional
pUL38 and viral growth.

Given that pUL38 can inhibit premature cell death and antag-
onize TSC2 to facilitate HCMV replication, we determined if the
truncated mutant proteins pUL3812–331, pUL3825–331, and
pUL3835–331 retained the ability to block cell death during virus
infection. Immunoblot analysis showed that pUL3812–331 was ac-
cumulated to a slightly higher level than HA-tagged pUL38 and
pUL3825–331 protein was expressed at a level similar to that of
HA-tagged pUL38, but pUL3835–331 was almost undetectable dur-
ing infection (Fig. 2A). As expected, ADinHA-UL38 inhibited pre-
mature cell death, unlike ADpmUL38 (23, 30), a mutant virus that
does not express pUL38 (Fig. 2B). The cell death morphology is
indicated by more round floating cells and fewer cells adhering to
the dishes. ADtrunHA-UL3812–331 and ADtrunHA-UL3825–331

also inhibited cell death, while ADtrunHA-UL3835–331 induced
cell death late postinfection (Fig. 2B). Consistent with these re-
sults, PARP cleavage was inhibited in HF cells infected with
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ADinHA-UL38, ADtrunHA-UL38
12–331

, and ADtrunHA-UL3825–331

but induced in cells infected with ADtrunHA-UL3835–331 and
ADpmUL38 (Fig. 2A). Thus, the phenotype of ADtrunHA-UL3835–

331 virus mimics that of ADpmUL38, probably as a result of the loss of
pUL38 protein expression. Therefore, in the rest of the manuscript,
we focused on pUL3825–331, which was sufficiently expressed and
blocked cell death (Fig. 2) but resulted in a 10-fold reduction in virus
growth (Fig. 1C).

pUL3825–331 induces S6K phosphorylation without binding
to TSC2 during HCMV infection. We previously showed that
pUL38 suppressed cell death independently of its ability to induce
mTORC1 activation (31). ADtrunHA-UL3825–331 virus retained
the ability to block cell death, but virus growth was reduced by
about 10-fold. Therefore, we determined if the N-terminal-trun-
cated mutants of pUL38 retained the ability to activate mTORC1.
We used S6K phosphorylation (phos-S6K) as an indicator of

mTORC1 activation, as described previously (31). The ADp-
mUL38 mutant virus induced apparent S6K phosphorylation,
consistent with our previous report that HCMV could activate
mTORC1 in a pUL38-independent manner (31). However, AD-
inHA-UL38 and ADtrunHA-UL3812–331 viruses induced S6K
phosphorylation to much greater levels, indicating that pUL38
was required for full mTORC1 activation and that pUL3812–331

was fully capable of activating mTORC1 (Fig. 3A). ADtrunHA-
UL3825–331 virus induced S6K phosphorylation at levels greater
than those by ADpmUL38 but lower than those by ADinHA-
UL38, suggesting only partial pUL38-dependent activation of
mTORC1 (Fig. 3A). pUL38 was reported to induce mTORC1 ac-
tivation through binding to TSC2 (14). Therefore, we examined
the interactions of pUL38 and its mutants with TSC2 during virus
infection (Fig. 3B). As expected, HA-tagged full-length pUL38
(HA-UL38) and pUL3812–331 pulled down TSC2 effectively. How-

FIG 1 Construction and analysis of recombinant HCMV expressing serial N-terminal truncations of pUL38. EcoRI (A) and BamHI (B) restriction digestion analysis
of recombinant BAC-HCMV clones of pADinHA-UL38 and its mutants. White dots indicate differences between the parental BAC clone pAD-GFP and pADinHA-
UL38 or its mutants. Molecular size markers (in kilobases) are indicated. (C) Growth of wild-type virus (ADwt), ADinHA-UL38, and serial N-terminal-truncated
mutants, including ADtrunHA-UL3812–331, ADtrunHA-UL3825–331, and ADtrunHA-UL3835–331, was examined in fibroblasts at a multiplicity of infection (MOI) of
0.01. Supernatants of infected cells were collected on different days postinfection as indicated and analyzed for virus progeny by TCID50 assay.

FIG 2 Ability of various UL38-truncated mutants to inhibit cell death. (A) Normal HF cells were infected with ADinHA-UL38, ADtrunHA-UL3812–331,
ADtrunHA-UL3825–331, ADtrunHA-UL3835–331, and ADpmUL38 viruses at a multiplicity of infection (MOI) of 3. Cell samples were collected to examine the
cleavage of PARP at 72 h postinfection (hpi). (B) HF cells were infected with different viruses as indicated at an MOI of 3 as described for panel A. Cells were
analyzed for morphological changes by phase-contrast microscopy at 72 h postinfection. ADtrunHA-UL3835–331 and ADpmUL38 infection leaded to more
rounded and floating cells and fewer spindle-shaped cells adhering to the dishes compared to the others, which indicates the cell death morphology.
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ever, pUL3825–331 failed to pull down TSC2 in the assay, despite
being able to induce S6K phosphorylation.

We characterized the ADtrunHA-UL3825–331 mutant virus fur-
ther by comparing mTORC1 activation and viral protein expres-
sion of HA-UL38 and HA-UL3825–331 at multiple time points.
Both ADinHA-UL38 virus and ADtrunHA-UL3825–331 mutant vi-
rus induced S6K phosphorylation, but ADtrunHA-UL3825–331

mutant virus caused less S6K phosphorylation at all time points
than ADinHA-UL38 virus infection (Fig. 3C). Therefore, reduced
mTORC1 activation by the ADtrunHA-UL3825–331 mutant virus
was not time dependent, suggesting that during infection pUL38
was able to activate mTORC1 independently of TSC2 binding but

that maximal mTORC1 activation required its interaction with
TSC2. Viral immediate-early protein (IE1/2) and early protein
(pUL38) expression levels were similar during infection with mu-
tant ADtrunHA-UL3825–331 and ADinHA-UL38 viruses (Fig. 3D).
The expression levels of late proteins (pp28 and pp71) were
slightly reduced during ADtrunHA-UL3825–331 mutant virus in-
fection compared with those for ADinHA-UL38 infection (Fig.
3D). We further compared the virus growth of ADtrunHA-
UL3825–331 and ADinHA-UL38 at high or low multiplicity of in-
fection (MOI). As shown in Fig. 3E, ADtrunHA-UL3825–331 grew
almost as well as the wild-type virus expressing the full-length
pHA-UL38 at an MOI of 3 but produced �10-fold less progeny

FIG 3 ADtrunHA-UL3825–331 was able to induce S6K phosphorylation without binding to TSC2 during HCMV infection. (A) HF cells were mock infected or
were infected with ADinHA-UL38, ADtrunHA-UL3812–331, ADtrunHA-UL3825–331, or ADpmUL38 virus at a multiplicity of infection of 3. mTORC1 activity was
examined by detecting the level of phos-S6K at 24 h postinfection (hpi). The numbers indicate the phosphorylation rate of S6K. The ratio of phos-S6K to S6K in
mock-infected cells was set as 1. (B) HF cells infected with the indicated viruses were collected at 72 hpi. Cell lysates then were subjected to immunoprecipitation
with protein A beads incubated with HA antibody. (C) HF cells that were mock infected or infected with ADinHA-UL38 or ADtrunHA-UL3825–331 were tested
for mTORC1 activity at different times postinfection. (D) Expression levels of viral immediate-early, early, and late proteins were detected in HF cells that were
mock infected or were infected with ADinHA-UL38 or ADtrunHA-UL3825–331 at different times postinfection, as indicated. (E) Growth of ADinHA-UL38 and
the N-terminal-truncated mutant virus ADtrunHA-UL3825–331 was examined in HFs at a multiplicity of infection (MOI) of 3 or 0.01. Supernatants of infected
cells were collected on different days postinfection as indicated and analyzed for virus production by TCID50 assay.

TSC2-Independent mTORC1 Activation by HCMV pUL38

August 2015 Volume 89 Number 15 jvi.asm.org 7629Journal of Virology

 on A
ugust 27, 2015 by W

ashington U
niversity in S

t. Louis
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org
http://jvi.asm.org/


virus at an MOI of 0.01. The data indicate that the N-terminal 24
amino acids of pUL38, its interaction with TSC2, and the full
activation of mTORC1 are required for optimal virus growth in an
MOI-dependent manner.

pUL3825–331 activates mTORC1 independently of TSC2
binding when expressed in isolation. The previous study demon-
strates that pUL38 is sufficient to mediate TSC2-dependent
activation of mTORC1 in isolation (14). We were interested in
determining whether pUL3825–331 also could mediate TSC2-inde-
pendent activation of mTORC1 in the absence of any other viral
proteins. To test this, we created HF cells stably expressing empty
vector, pHA-UL38, or pHA-UL3825–331. These cells were serum
starved for 3 days and then collected to test for mTORC1 activity
by detecting the levels of phos-S6K. Immunoblot analysis showed
that pHA-UL38 was capable of inducing high levels of phos-S6K,
indicating high mTORC1 activation, consistent with previous re-
sults (Fig. 4A) (31). Importantly, pHA-UL3825–331 also was able to
induce relatively high levels of phos-S6K compared to those of the
empty vector control, although they were lower than those for
pHA-UL38, suggesting that the mutant protein retained the abil-
ity to activate mTORC1. Furthermore, when coexpressed, full-
length pUL38 and TSC2 could pull down each other while
pUL3825–331 (either HA or Flag-tagged) failed to do so (Fig. 4B and
C). pUL3825–331 did not pull down TSC1, a protein complexed
with TSC2 to negatively regulate mTORC1, either (Fig. 4B). These
results suggest that amino acids 1 to 24 are essential for the inter-
action between pUL38 and TSC2, and that pUL38, lacking these
amino acids, still was able to activate mTORC1 outside the context
of HCMV infection.

A TQ motif of pUL38 is required for pUL38-TSC2 inter-
action. As pHA-UL3812–331 interacts with TSC2 but pHA-
UL3825–331 failed to do so (Fig. 3B), we hypothesized that the

TSC2-binding motif was located among residues 13 to 24 of
pUL38. Therefore, we mapped the key amino acids required for
TSC2 binding by constructing six recombinant clones of
pUL38, sequentially replacing two neighboring amino acids at
a time to alanines among residues 13 to 24. The mutants were
SL/AA, LD/AA, E/A, EW/AA, RQ/AA, and TQ/AA, all of which
were tagged with HA at their N termini to facilitate protein
detection (Fig. 5A). Coimmunoprecipitation analysis showed
that the mutants SL/AA, LD/AA, EW/AA, and RQ/AA still were
able to combine with TSC2 (Fig. 5B). However, the E/A mutant
demonstrated reduced binding to TSC2, while the TQ/AA mu-
tant completely lost the ability to interact with TSC2 (Fig. 5B).
These data indicate that the E residue is important and the TQ
motif is necessary for pUL38 binding to TSC2. We tested if the
TQ mutant that failed to bind to TSC2 was able to activate
mTORC1. As shown in Fig. 5C, the levels of phos-S6K were
increased after expressing pHA-UL38 TQ/AA and pHA-
UL3825–331 in HFs, although phosphorylation was less than that
in cells expressing full-length HA-UL38 (Fig. 5C). As expected,
when cells were treated with rapamycin, an mTORC1-specific
allosteric inhibitor, the phos-S6K induced by pUL38 isoforms
was completely blocked (Fig. 5D). These data demonstrated
that the TQ motif was required for pUL38 to interact with
TSC2, and that mTORC1 could be activated in a TSC2-bind-
ing-independent manner by pUL38 in isolation.

The site-specific mutants mimic the function of pHA-
UL3825–331. In order to study the role of site-specific mutants
(TQ/AA and E/A) in the context of virus infection, we made HF
cells stably expressing these mutant proteins, infected them with
pUL38-deficient virus ADpmUL38, and then tested virus growth,
cell death, and mTORC1 activity. The full-length pUL38-express-
ing cells (HF-HA-UL38) known to complement ADpmUL38 were

FIG 4 pUL3825–331 activates mTORC1 when expressed alone. (A) HF cells expressing empty vector (vector), pHA-UL38 (HA-UL38), or pHA-UL3825–331

(UL3825–331) were generated by lentivirus transduction. Different HF cells were serum starved for 72 h before collecting the cell lysates. mTORC1 activity was
examined by detecting the levels of S6K phosphorylation. (B) The interaction between pUL38, pUL3825–331, and TSC2 or TSC1 was investigated by cotransfecting
293T cells with TSC2 and Flag-GFP-, pFlag-UL38-, or pFlag-UL3825–331-expressing plasmid, and cell samples were collected 48 h later for immunoprecipitation
with anti-Flag beads. WCL, whole-cell lysates. (C) The inability of pHA-UL3825–331 binding to TSC2 was confirmed by reciprocal coimmunoprecipitation. 293T
cells were cotransfected with Flag-GFP and pHA-UL38-, Flag-TSC2 and pHA-UL38-, or Flag-TSC2 and pHA-UL3825–331-expressing plasmid, and cell samples
were collected 48 h later and subjected to immunoprecipitation with anti-Flag beads.
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used as the positive control, and the cells expressing an empty
vector (HF vector) were used as the negative control. As expected,
pUL38-deficient virus ADpmUL38 was greatly growth attenuated
in control cells (HF vector) but grew efficiently in cells expressing
wild-type pUL38 (HF-HA-UL38) (Fig. 6A and B). At a low MOI of
0.01, the growth of pUL38-deficient virus was partially rescued in
cells expressing pUL38 mutants (HF-UL3825–331, HF-TQ/AA, and
HF-E/A) with an �10-fold lower efficiency than that in HF-HA-
UL38 cells (Fig. 6A). High-MOI growth curve analysis revealed
the virus replicated equally well in all of the pUL38 mutant-ex-
pressing cells (Fig. 6B), suggesting that the TSC2 binding of
pUL38 and the full activation of mTORC1 are not required for
maximum HCMV replication on HFs on a single-step growth
curve. The site-specific mutants inhibited cell death (Fig. 6C) and
activated mTORC1 (Fig. 6D) similarly to pHA-UL3825–331. Tak-
ing these findings together, we showed that the site-specific mu-
tants unable to interact with TSC2 mimic the function of pHA-
UL3825–331.

pUL38 further increases mTORC1 activity in TSC2 knockout
cells. To provide additional evidence that pUL38 was able to acti-
vate mTORC1 independently of TSC2 interaction, we tested the

ability of pUL38 to increase mTORC1 activity in the absence of
TSC2. The CRISPR/Cas9 system (38) was used to knock out TSC2
in U373-MG human glioblastoma cells. To minimize off-target
effects, we chose two sgRNAs (Fig. 7A) targeting TSC2 at two
different gene locations, which were predicted to have minimal
off-target activities by an optimized algorithm (32). Cas9- and
TSC2-specific sgRNAs were introduced into U373-MG cells by
lentiviral vector transduction, and TSC2-null cell lines were
cloned by limited serial dilution, as described in Materials and
Methods. Two clones, 1-17 and 2-7, derived from each sgRNA,
were validated by sequencing the genome-targeting site (data not
shown) and by immunoblotting (Fig. 7B). As shown in Fig. 7B,
TSC2 protein expression was completely disrupted in both clones.
The level of phos-S6K was dramatically upregulated in both clones
compared to levels in cells expressing Cas9 only, consistent with a
negative regulatory role of TSC2 on mTORC1. When pUL38 was
expressed in TSC2-null cells, phos-S6K was further increased
compared to levels in cells expressing empty vector (Fig. 7B and
C). pUL3825–331 and pUL38-TQ/AA behaved similarly to pUL38
in TSC2-null cells to further increase mTORC1 (Fig. 7C). To test
if this also is true in HFs, we used RNA interference (RNAi) to

FIG 5 TQ motif of pUL38 is a binding site for TSC2. (A) Schematic of pUL38 with different mutations. The binding site of pUL38 for TSC2 was mapped by
mutating two neighboring amino acids between residues 13 and 24 at a time. The sequences between 13 and 24 of wild-type pUL38 and its mutants are indicated
in the diagram. Mutant amino acids are in gray. (B) 293T cells were cotransfected with Flag-TSC2 and different pUL38 mutants, including SL/AA, LD/AA, E/A,
EW/AA, RQ/AA, and TQ/AA. Cotransfection of pHA-UL38 and Flag-TSC2 or Flag-GFP were used as positive and negative controls, respectively. Cell lysates
were subjected to immunoprecipitation with anti-Flag beads 48 h after transfection. (C) TQ/AA mutant was able to activate mTORC1. HF cells stably expressing
empty vector (vector), pHA-UL38, pHA-UL3825–331 (UL3825–331), and pHA-UL38 TQ/AA (TQ/AA) were created by lentivirus transduction. The cells then were
serum starved for 72 h and collected to detect mTORC1 activity. (D) Rapamycin sensitivity of S6K phosphorylation induced by pUL38 variants. HF cells stably
expressing empty vector (vector), pHA-UL38, pHA-UL3825–331 (UL3825–331), and pHA-UL38 TQ/AA (TQ/AA) were serum starved for 72 h with or without
rapamycin. Cell lysates were collected to detect mTORC1 activity. Long, long exposure; short, short exposure.
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knock down TSC2. CRISPR-mediated gene knockout requires
single-cell cloning, which is not applicable to primary human fi-
broblasts. As shown in Fig. 7D, shTSC2-2 potently suppressed
TSC2 expression, and pUL38 and its variants further increased
S6K phosphorylation in the TSC2 knockdown HFs. The results
indicate that pUL38 can activate mTORC1 through pathways
other than antagonizing TSC2. Overall, we have identified resi-
dues in pUL38 critical for its binding to TSC2 and demonstrated
that pUL38 was able to activate mTORC1 independently of TSC2
binding.

DISCUSSION

The importance of mTORC1 activation in the life cycle of HCMV
has been demonstrated by in vitro studies (14, 20, 21, 39–43). The
therapeutic immune suppression in transplant recipients with
mTORC1 inhibitors has significantly reduced the incidence of
HCMV reactivation (44, 45), implying an antiviral role of target-
ing mTORC1 in clinical settings. Moorman et al. discovered that
the HCMV protein pUL38 interacts with TSC2 and activates
mTORC1 by antagonizing TSC function (14). We previously an-
alyzed the domains and motifs important for pUL38 activities and
identified the C-terminal residues from 240 to 277 as critical for
pUL38 activation of mTORC1 in isolation (31). However, the
truncated mutant pUL381–239, which failed to activate mTORC1

in isolation, still retained the ability to interact with TSC2 to activate
mTORC1 in the context of virus infection (31). In this study, we
identified residues 12 to 24, and particularly a TQ motif at amino
acids 23 and 24, as essential for mediating the interaction between
pUL38 and TSC2. Surprisingly, however, the mutant pUL38 that was
unable to interact with TSC2 still activated mTORC1, both during
virus infection and in isolation. In addition, under a background of
TSC2 depletion by CRISPR genome editing, pUL38 increased
mTORC1 activity in human U373-MG cells, demonstrating that
pUL38 was able to activate mTORC1 by a TSC2-indpendent mech-
anism. These results and those of previous studies reveal a sophisti-
cated method of mTORC1 upregulation by HCMV at multiple levels
employing several different mechanisms, indicating a crucial role for
mTORC1 in HCMV infection.

There are several possible explanations for the importance of
mTORC1 activation in HCMV replication. First, HCMV is the larg-
est human virus, with a double-stranded DNA genome of over 240
kb, which forms a large virion particle consisting of over 70 virus-
encoded structural proteins (46). This suggests that HCMV needs to
maintain highly active mTORC1 to support the anabolic metabolism
and protein translation required to produce progeny viruses. Second,
the high energy and nutrient demands of HCMV replication inevita-
bly result in stresses that could suppress mTORC1 and impair prog-
eny virus production if HCMV is unable to counteract them. Finally,

FIG 6 Site-specific mutants of pUL38 mimic the function of pHA-UL3825–331. (A and B) HF cells expressing empty vector (vector), pHA-UL38, pHA-UL3825–331

(UL3825–331), pHA-UL38 TQ/AA (TQ/AA), and pHA-UL38 E/A (E/A) were created. These HF cells then were infected with ADpmUL38 at a multiplicity of
infection (MOI) of 0.01 (A) or 3 (B), respectively. Supernatants of infected cells were collected on different days postinfection as indicated, and virus titers were
determined by TCID50 assay. (C and D) These different HF cells were infected with ADpmUL38 at a multiplicity of infection (MOI) of 3. Cell lysates then were
collected to examine the cleavage of PARP at 72 h postinfection (hpi) or to examine mTORC1 activity by detecting the level of phos-S6K at 24 hpi.

Bai et al.

7632 jvi.asm.org August 2015 Volume 89 Number 15Journal of Virology

 on A
ugust 27, 2015 by W

ashington U
niversity in S

t. Louis
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org
http://jvi.asm.org/


HCMV has a broad cell tropism in vivo and demonstrates at least two
forms of infection, namely, lytic and latent infections. Therefore, it
may mobilize different mechanisms to fine tune mTORC1 activity
for infection of various cell types and forms.

mTORC1 can be activated by at least two parallel pathways, an

amino acid-sensitive pathway and a growth factor-stimulated
PI3K-Akt signaling pathway. Recent studies have investigated the
amino acid-mediated signaling pathway leading to mTORC1 ac-
tivation. Amino acids accumulated inside the lysosome are sensed
by the vacuolar H� ATPase, which activates the guanine nucleo-

FIG 7 pUL38 activates mTORC1 in TSC2-knockout cells. (A) Locations of two chosen sgRNAs targeting the TSC2 genome. The two sites are enlarged and the
targeting sequences are indicated with boldface italics. (B) Control and TSC2-null U373-MG cell lines (clones 1-17 and 2-7) were transduced with empty vector
(vector) and pHA-UL38-expressing lentivirus, respectively. Cells were serum starved for 48 h and collected to measure mTORC1 activity. Long, long exposure;
short, short exposure. (C) The ability of pHA-UL3825–331 (UL3825–331) and pHA-UL38 TQ/AA (TQ/AA) to stimulate mTORC1 activity in TSC2-null U373-MG
cells (clone 2-7) was tested by using the same experiment procedures as those for panel B. (D) HFs were transduced with control (shCtrl) or TSC2-specific shRNA
(shTSC2-1 and shTSC2-2)-expressing lentiviruses. They then were transduced with empty (vector) or pHA-UL38 (HA-UL38)-, pHA-UL3825–331 (UL3825–331)-,
or pHA-UL38 TQ/AA (TQ/AA) expressing vector. The cells were serum starved for 72 h. Cell lysates were collected to detect mTORC1 activity.
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tide exchange factor Ragulator (47, 48). The GTP-bound Rag
complex recruits mTORC1 to the lysosomal surface (49, 50),
where it meets another small GTPase, Rheb. In its GTP-bound
form, Rheb eventually activates mTORC1 (15, 16, 19). Rheb itself
is regulated by the parallel PI3K-Akt signaling pathway. TSC2 is a
component of the TSC, which is a substrate of Akt in this pathway,
and TSC functions as a negative regulator of Rheb and, as a result,
of mTORC1 (15, 16, 19).

From the pUL38 aspect, HCMV uses three mechanisms to ac-
tivate mTORC1: (i) a pUL38-independent mechanism, demon-
strated by the fact that mutant virus deficient in pUL38 had in-
creased mTORC1 activity compared to that of mock infection
(31), although to a lesser extent than wild-type virus; (ii) a pUL38-
and TSC2-dependent mechanism (14); and (iii) a pUL38-depen-
dent but TSC2-independent mechanism. Clippinger et al. discov-
ered that HCMV stimulated the perinuclear localization of
mTORC1, and its activation by a dynein-dependent but Rag
GTPase-independent mechanism (22, 51), as early as 8 h postin-
fection (51). This suggests that it represents pUL38-independent
activation of mTORC1, given that pUL38 is defined as a viral early
protein localized in the nucleus at early times postinfection (23)
and is unlikely to be involved in very early events in the cytoplasm.
In terms of the TSC2-dependent mechanism, it remains to be
elucidated precisely how pUL38 inactivates TSC2. HPV E6 inter-
acts with TSC2 and mediates its protein degradation, suppressing
its function and in turn activating mTORC1 (13, 52). pUL38 does
not lead to TSC2 degradation or compete with TSC1 binding (14);
thus, it likely antagonizes TSC2 activity by affecting its posttrans-
lational modification, which has been reported to be involved in
regulating TSC2 function (14).

In this study, we identified a pUL38-dependent but TSC2-inde-
pendent mechanism of mTORC1 activation. The amino acid-medi-
ated signaling pathway leading to mTORC1 activation was thought to
be parallel to the growth factor-induced TSC2-dependent pathway.
However, it is unlikely that this represents the mechanism used by
pUL38, because this pathway is altered during HCMV infection, and
mTORC1 relocation during HCMV infection associated with the
amino acid-mediated pathway is a very early event (51); therefore,
pUL38 would be unable to be involved for the reasons given in the
previous paragraph. Posttranslational modifications of mTORC1
pathway components downstream of TSC2 by various protein ki-
nases, such as p38 and PARK (53), DAPK2 (54), IKK� (55), and
TAK1 (56), have been revealed, and these events regulate mTORC1
activity. Further studies are needed to determine if these or other
novel mechanisms are involved in pUL38-dependent but TSC2-in-
dependent mTORC1 activation.
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