45,040 research outputs found

    Comment on ''the controlled charge ordering and evidence of the metallic state in Pr0.65_{0.65}Ca0.35_{0.35}MnO3_{3} films''

    Full text link
    In a recent paper (2000 \QTR{it}{J. Phys.: Condens. Matter} \QTR{bf}{12} L133) Lee \QTR{it}{et al.} have studied the transport properties of Pr0.65_{0.65}Ca0.35_{0.35}MnO3_{3} thin films. They claimed that they are able to controlled the charge-ordered (CO) state by the lattice strains. We propose herein another alternative since another indexation of the orientation of the film can be found leading to almost no distortion of the cell, as compared to the bulk compound.Comment: 2 page

    Global Models of Planet Formation and Evolution

    Get PDF
    Despite the increase in observational data on exoplanets, the processes that lead to the formation of planets are still not well understood. But thanks to the high number of known exoplanets, it is now possible to look at them as a population that puts statistical constraints on theoretical models. A method that uses these constraints is planetary population synthesis. Its key element is a global model of planet formation and evolution that directly predicts observable planetary properties based on properties of the natal protoplanetary disk. To do so, global models build on many specialized models that address one specific physical process. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disk (gas and solids), the (proto)planet (solid core, gaseous envelope, and atmosphere), and finally the interactions (migration and N-body interaction). We compare the approaches in different global models and identify physical processes that require improved descriptions in future. We then address important results of population synthesis like the planetary mass function or the mass-radius relation. In these results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Due to their nature as meta models, global models depend on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that global models will in future undergo significant modifications. Despite this, they can already now yield many testable predictions. With future global models addressing the geophysical characteristics, it should eventually become possible to make predictions about the habitability of planets.Comment: 30 pages, 16 figures. Accepted for publication in the International Journal of Astrobiology (Cambridge University Press

    A two component jet model for the X-ray afterglow flat segment in short GRB 051221A

    Full text link
    In the double neutron star merger or neutron star-black hole merger model for short GRBs, the outflow launched might be mildly magnetized and neutron rich. The magnetized neutron-rich outflow will be accelerated by the magnetic and thermal pressure and may form a two component jet finally, as suggested by Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two component jet model could well reproduce the multi-wavelength afterglow lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In this model, the central engine need not to be active much longer than the prompt γ\gamma-ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ

    Enhanced Macroscopic Quantum Tunneling in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} Intrinsic Josephson Junction Stacks

    Full text link
    We have investigated macroscopic quantum tunneling in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions at millikelvin temperatures using microwave irradiation. Measurements show that the escape rate for uniformly switching stacks of N junctions is about N2N^2 times higher than that of a single junction having the same plasma frequency. We argue that this gigantic enhancement of macroscopic quantum tunneling rate in stacks is boosted by current fluctuations which occur in the series array of junctions loaded by the impedance of the environment.Comment: 4 pages and 5 figure

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
    corecore