1,495 research outputs found

    Dirac gaugino as leptophilic dark matter

    Full text link
    We investigate the leptophilic properties of Dirac gauginos in an R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors. The annihilation of Dirac gauginos to leptons requires no chirality flip in the final states so that it is not suppressed as in the Majorana case. This implies that it can be sizable enough to explain the positron excess observed by the PAMELA experiment with moderate or no boost factors. When squark masses are heavy, the annihilation of Dirac gauginos to hadrons is controlled by their Higgsino fraction and is driven by the hZhZ and W+W−W^+W^- final states. Moreover, at variance with the Majorana case, Dirac gauginos with a non-vanishing higgsino fraction can also have a vector coupling with the ZZ gauge boson leading to a sizable spin--independent scattering cross section off nuclei. Saturating the current antiproton limit, we show that Dirac gauginos can leave a signal in direct detection experiments at the level of the sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on JCA

    Probing the energy bands of a Bose-Einstein condensate in an optical lattice

    Full text link
    We simulate three experimental methods which could be realized in the laboratory to probe the band excitation energies and the momentum distribution of a Bose-Einstein condensate inside an optical lattice. The values of the excitation energies obtained in these different methods agree within the accuracy of the simulation. The meaning of the results in terms of density and phase deformations is tested by studying the relaxation of a phase-modulated condensate towards the ground state.Comment: 5 pages, 5 figure

    Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions

    Full text link
    We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis of (e,eâ€Čpe,e'p) data. We find that the relativistic calculations produce smaller (e,eâ€Čpe,e'p) cross sections even in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic proton--nucleus scattering data. Compared to the nonrelativistic impulse approximation, this effect is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be taken into account in the nonrelativistic treatment by a proper redefinition of the effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the list of references updated. Added one appendix. This version will appear in Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints

    Field-induced segregation of ferromagnetic nano-domains in Pr0.5_{0.5}Sr0.5_{0.5}MnO3_3, detected by 55^{55}Mn NMR

    Full text link
    The antiferromagnetic manganite Pr0.5_{0.5}Sr0.5_{0.5}MnO3_3 was investigated at low temperature by means of magnetometry and 55^{55}Mn NMR. A field-induced transition to a ferromagnetic state is detected by magnetization measurements at a threshold field of a few tesla. NMR shows that the ferromagnetic phase develops from zero field by the nucleation of microscopic ferromagnetic domains, consisting of an inhomogeneous mixture of tilted and fully aligned parts. At the threshold the NMR spectrum changes discontinuously into that of a homogeneous, fully aligned, ferromagnetic state, suggesting a percolative origin for the ferromagnetic transition.Comment: Latex 2.09 language. 4 pages, 3 figures, 23 references. Submitted to physical Review

    The Middle Way: East Asian masters students’ perceptions of critical argumentation in U.K. universities.

    Get PDF
    The paper explores the learning experiences of East Asian masters students in dealing with Western academic norms of critical thinking in classroom debate and assignment writing. The research takes a cultural approach, and employs grounded theory and case study methodology, the aims being for students to explain their perceptions of their personal learning journeys. The data suggest that the majority of students interviewed rejected full academic acculturation into Western norms of argumentation. They instead opted for a ‘Middle Way’ that synergizes the traditional cultural academic values held by many East Asian students with those elements of Western academic norms that are perceived to be aligned with these. This is a relatively new area of research which represents a challenge for British lecturers and students

    Polarized interacting exciton gas in quantum wells and bulk semiconductors

    Get PDF
    We develop a theory to calculate exciton binding energies of both two- and three-dimensional spin polarized exciton gases within a mean field approach. Our method allows the analysis of recent experiments showing the importance of the polarization and intensity of the excitation light on the exciton luminescence of GaAs quantum wells. We study the breaking of the spin degeneracy observed at high exciton density (5  1010cm2)(5 \ \ 10^{10} cm ^2). Energy level splitting betwen spin +1 and spin -1 is shown to be due to many-body inter-excitonic exchange while the spin relaxation time is controlled by intra-exciton exchange.Comment: Revtex, 4 figures sent by fax upon request by e-mai

    Ultrasonic evidence of an uncorrelated cluster formation temperature in manganites with first-order magnetic transition at T_C

    Full text link
    Ultrasonic attenuation and phase velocity measurements have been carried out in the ferromagnetic perovskites La_{2/3}Ca_{1/3}MnO_3 and La_{2/3}Sr_{1/3}MnO_3. Data show that the transition at the Curie temperature, T_C, changes from first- to second-order as Sr replaces Ca in the perovskite. The compound with first-order transition shows also another transition at a temperature T* > T_C. We interpret the temperature window T_C < T < T* as a region of coexistence of a phase separated regime of metallic and insulating regions, in the line of recent theoretical proposals.Comment: 4 pages, 2 figure

    Instabilities and Bifurcations of Nonlinear Impurity Modes

    Get PDF
    We study the structure and stability of nonlinear impurity modes in the discrete nonlinear Schr{\"o}dinger equation with a single on-site nonlinear impurity emphasizing the effects of interplay between discreteness, nonlinearity and disorder. We show how the interaction of a nonlinear localized mode (a discrete soliton or discrete breather) with a repulsive impurity generates a family of stationary states near the impurity site, as well as examine both theoretical and numerical criteria for the transition between different localized states via a cascade of bifurcations.Comment: 8 pages, 8 figures, Phys. Rev. E in pres

    Hole-doping dependence of percolative phase separation in Pr_(0.5-delta)Ca_(0.2+delta)Sr_(0.3)MnO_(3) around half doping

    Full text link
    We address the problem of the percolative phase separation in polycrystalline samples of Pr0.5−ή_{0.5-\delta}Ca0.2+ÎŽ_{0.2+\delta}Sr0.3_{0.3}MnO3_3 for −0.04≀Ύ≀0.04-0.04\leq \delta \leq 0.04 (hole doping nn between 0.46 and 0.54). We perform measurements of X-ray diffraction, dc magnetization, ESR, and electrical resistivity. These samples show at TCT_C a paramagnetic (PM) to ferromagnetic (FM) transition, however, we found that for n>0.50n>0.50 there is a coexistence of both of these phases below TCT_C. On lowering TT below the charge-ordering (CO) temperature TCOT_{CO} all the samples exhibit a coexistence between the FM metallic and CO (antiferromagnetic) phases. In the whole TT range the FM phase fraction (XX) decreases with increasing nn. Furthermore, we show that only for n≀0.50n\leq 0.50 the metallic fraction is above the critical percolation threshold XC≃15.5X_C\simeq 15.5%. As a consequence, these samples show very different magnetoresistance properties. In addition, for n≀0.50n\leq 0.50 we observe a percolative metal-insulator transition at TMIT_{MI}, and for TMI<T<TCOT_{MI}<T<T_{CO} the insulating-like behavior generated by the enlargement of XX with increasing TT is well described by the percolation law ρ−1=σ∌(X−XC)t\rho ^{-1}=\sigma \sim (X-X_C)^t, where tt is a critical exponent. On the basis of the values obtained for this exponent we discuss different possible percolation mechanisms, and suggest that a more deep understanding of geometric and dimensionality effects is needed in phase separated manganites. We present a complete TT vs nn phase diagram showing the magnetic and electric properties of the studied compound around half doping.Comment: 9 text pages + 12 figures, submitted to Phys. Rev.
    • 

    corecore