13,362 research outputs found

    Physical Properties of Galactic Planck Cold Cores revealed by the Hi-GAL survey

    Get PDF
    Previous studies of the initial conditions of massive star formation have mainly targeted Infrared-Dark Clouds (IRDCs) toward the inner Galaxy. This is due to the fact that IRDCs were first detected in absorption against the bright mid-IR background, requiring a favourable location to be observed. By selection, IRDCs represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Due to their low dust temperatures, IRDCs are bright in the far-IR and millimeter and thus, observations at these wavelengths have the potential to provide a complete sample of star-forming massive clouds across the Galaxy. Our aim is to identify the clouds at the initial conditions of massive star formation across the Galaxy and compare their physical properties as a function of their Galactic location. We have examined the physical properties of a homogeneous galactic cold core sample obtained with the Planck satellite across the Galactic Plane. With the use of Herschel Hi-GAL observations, we have characterized the internal structure of them. By using background-subtracted Herschel images, we have derived the H2 column density and dust temperature maps for 48 Planck clumps. Their basic physical parameters have been calculated and analyzed as a function of location within the Galaxy. These properties have also been compared with the empirical relation for massive star formation derived by Kauffmann & Pillai (2010). Most of the Planck clumps contain signs of star formation. About 25% of them are massive enough to form high mass stars. Planck clumps toward the Galactic center region show higher peak column densities and higher average dust temperatures than those of the clumps in the outer Galaxy. Although we only have seven clumps without associated YSOs, the Hi-GAL data show no apparent differences in the properties of Planck cold clumps with and without star formation.Comment: 22 pages, 11 figures, accepted for publication in A&

    Environment and the cosmic evolution of star formation

    Get PDF
    We present a mark correlation analysis of the galaxies in the Sloan Digital Sky Survey using weights provided by MOPED. The large size of the sample permits statistically significant statements about how galaxies with different metallicities and star formation histories are spatially correlated. Massive objects formed a larger fraction of their stars at higher redshifts and over shorter timescales than did less massive objects (sometimes called down-sizing). We find that those galaxies which dominated the cosmic star formation at z~3 are predominantly in clusters today, whereas galaxies which dominate the star formation at z~0 inhabit substantially lower mass objects in less dense regions today. Hence, our results indicate that star formation and chemical enrichment occured first in the denser regions of the Universe, and moved to less dense regions at later times.Comment: 4 pages, 4 figures, submitted to ApJ

    Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB

    Get PDF
    We place tight constraints on the redshift-averaged, effective value of the equation of state of dark energy, w, using only the absolute ages of Galactic stars and the observed position of the first peak in the angular power spectrum of the CMB. We find w<-0.8 at the 68% confidence level. If we further consider that w > -1, this finding suggests that within our uncertainties, dark energy is indistinguishable from a classical vacuum energy term. We detect a correlation between the ages of the oldest galaxies and their redshift. This opens up the possibility of measuring w(z) by computing the relative ages of the oldest galaxies in the universe as a function of redshift, dz/dt. We show that this is a realistic possibility by computing dz/dt at z~0 from SDSS galaxies and obtain an independent estimate for the Hubble constant, H_0 = 69 \pm 12 km s-1 Mpc-1. The small number of galaxies considered at z>0.2 does not yield, currently, a precise determination of w(z), but shows that the age--redshift relation is consistent with a Standard LCDM universe with w=1w=-1.Comment: Submitted to Ap

    Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

    Get PDF
    In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10910^{-9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.Comment: 5 pages, no figure

    The Cosmic Neutrino Background and the Age of the Universe

    Full text link
    We discuss the cosmological degeneracy between the age of the Universe, the Hubble parameter and the effective number of relativistic particles N_eff. We show that independent determinations of the Hubble parameter H(z) as those recently provided by Simon,Verde, Jimenez (2006), combined with other cosmological data sets can provide the most stringent constraint on N_eff, yielding N_eff=3.7 (-1.2) (+1.1) at 95% confidence level. A neutrino background is detected with high significance: N_eff >1.8 at better than 99% confidence level. Constraints on the age of the universe in the framework of an extra background of relativistic particles are improved by a factor 3.Comment: JCAP, in pres

    Collapsing molecular clouds with tracer particles: Part II, Collapse Histories

    Full text link
    In order to develop a complete theory of star formation, one essentially needs to know two things: what collapses, and how long it takes. This is the second paper in a series, where we query how long a parcel of gas takes to collapse and the process it undergoes. We embed pseudo-Lagrangian tracer particles in simulations of collapsing molecular clouds, identify the particles that end in dense knots, and then examine the collapse history of the gas. We find a nearly universal behavior of cruise-then-collapse. We identify gas the moment before it collapses, tsingt_{\rm{sing}}, and examine how it transitions to high density. We find that the time to collapse is uniformly distributed between 0.25tff0.25 t_{\rm{ff}} and the end of the simulation at 1tff\sim 1 t_{\rm{ff}}, and that the collapse duration is universally short, Δt0.1tff\Delta t \sim 0.1 t_{\rm{ff}}. We find that the collapse of each core happens by a process akin to violent relaxation, wherein a fast reordering of the potential and kinetic energies occurs, in 0.1tff0.1 t_{\rm{ff}}, after which a virialized object remains. We describe the collapse in four stages; collection, hardening, singularity, and mosh. Collection sweeps low density gas into moderate density. Hardening brings kinetic and gravitational energies into quasi-equipartition. Singularity is the free-fall collapse, forming a virialized object in 0.1tff\sim 0.1 t_{\rm{ff}}. Mosh encompasses tidal dynamics of sub clumps and nearby cores during the collapse. In this work we focus primarily on isolated clumps. With this novel lens we can observe the details of collapse

    Integral-field spectroscopy of the quadruple QSO HE 0435-1223: Evidence for microlensing

    Full text link
    We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between model and data are still unacceptably large. Finally, we present a detection of the lensing galaxy, although this is close to the limits of the data. Comparing with a model galaxy spectrum, we obtain a redshift estimate of z_lens=0.44+-0.02.Comment: 9 pages, 7 figures, accepted for publication in A&
    corecore