534 research outputs found

    Pbte Quantum Dots - Sio2 Multilayers For Optical Devices Produced By Laser Ablation

    Get PDF
    Thin films of glass doped with PbTe quantum dots were successfully fabricated. The semiconducting quantum dots were grown by laser ablation of a PbTe target (99.99%) using the second harmonic of a Q-Switched Quantel Nd:YAG laser under high purity argon atmosphere. The glass matrix was fabricated by a plasma chemical vapor deposition method using vapor of tetramethoxysilane (TMOS) as precursor. The QD's and the glass matrix were alternately deposited onto a Si (100) wafer for 60 cycles. Cross-section TEM image clearly showed QD's layer well separated from each other with glass matrix layers. The influence of the ablation time on the size distribution of the quantum dots is studied. HRTEM revealed anisotropy in the size of the QD's: they were about 9nm in the high and 3-5 in diameter. Furthermore HRTEM studies revealed that the QD's basically growth in the (200) and (220) directions. The thickness of the glass matrix layer was about 20 nm. Absorption, photo luminescence and relaxation time of the multilayer were also measured.5734116123Alivisatos, A.P., (1996) Sci., 271, p. 933Warnock, J., Awschalom, D.D., (1985) Phys. Rev. B, 32, p. 5529Borrelli, N.F., May, D.W., Holland, H.J., Smith, D.W., (1987) J. Appl. Phys., 61, p. 399Potter, B.G., Simmons, J.H., (1988) Phys. Rev. B, 37, p. 10838Gleiter, H., (1989) Prog. Mater. Sci., 33, p. 223Tsunetomo, K., Shunsuke, S., Koyama, T., Tanaka, S., Sasaki, F., Kobayashi, S., (1995) Nonlinear Opt., 13, p. 109Reynoso, V.C.S., De Paula, A.M., Cuevas, R.F., Neto, J.A.M., Alves, O.L., Cesar, C.L., Barbosa, L.C., (1995) Electr. Lett., 31 (12), pp. 1013-1015Jacob, G.J., Cesar, C.L., Barbosa, L.C., (2002) Chem. Phys. Glass, 43 C, pp. 250-252Singh, R.K., Narayan, J., (1990) Phys. Rev. B, 41, p. 8843Barnes, J.P., (2002) Nanotechnology, 13, p. 465Tudury, G.E., Marquezini, M.V., Ferreira, L.G., Barbosa, L.C., Cesar, C.L., (2000) Phys. Rev. B, 62 (11), pp. 7357-7364Cesar, C.L., Jacob, G.J., Tudury, G.E., Marquezini, M.V., Barbosa, L.C., (2004) Atti della Fondazione G. Ronchi Journal, (4), pp. 519-528. , Anno LI

    Scalar conservation laws with nonconstant coefficients with application to particle size segregation in granular flow

    Full text link
    Granular materials will segregate by particle size when subjected to shear, as occurs, for example, in avalanches. The evolution of a bidisperse mixture of particles can be modeled by a nonlinear first order partial differential equation, provided the shear (or velocity) is a known function of position. While avalanche-driven shear is approximately uniform in depth, boundary-driven shear typically creates a shear band with a nonlinear velocity profile. In this paper, we measure a velocity profile from experimental data and solve initial value problems that mimic the segregation observed in the experiment, thereby verifying the value of the continuum model. To simplify the analysis, we consider only one-dimensional configurations, in which a layer of small particles is placed above a layer of large particles within an annular shear cell and is sheared for arbitrarily long times. We fit the measured velocity profile to both an exponential function of depth and a piecewise linear function which separates the shear band from the rest of the material. Each solution of the initial value problem is non-standard, involving curved characteristics in the exponential case, and a material interface with a jump in characteristic speed in the piecewise linear case

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.022630.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) 0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.77880.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) 0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.10790.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) 0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.001890.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) 0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.7113.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) 4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur

    Microbial activity monitoring by the Integrated Arctic Earth Observing System (MamSIOS)

    Get PDF
    Microorganisms, though already integral elements, are likely to play an increasingly important role in the Earth’s climate system (Falkowski et al., 2008) and are known to affect polar biogeochemical cycles (Larose et al., 2013a). In particular, they play important roles in the generation and decomposition of climate active gases. However, current climate models do not take into account the response of microbial activity and their influence in biochemical cycles (Incorporating microbial processes into climate models, ASM report). To improve the predictive ability of climate models, it is important to understand the mechanisms by which microorganisms regulate terrestrial greenhouse gas flux and to determine whether changes in microbial processes will lead to net positive or negative feedbacks on greenhouse gas emissions (Singh et al., 2010). This contribution has been particularly overlooked for the polar regions (Figure 1), where the environment has traditionally been considered too harsh for significant microbial activity to occur. It has long been considered that any life, if present at all, was either dormant or functioning sub-optimally, as living organisms have to be well adapted or highly resistant to extreme cold and desiccation, low nutrient availability and seasonally variable UV radiation levels in order to survive (Harding et al., 2011; Cameron et al., 2012; Goordial et al., 2013; Larose et al., 2013a). However, it is now clear that microbial presence is ubiquitous across the polar regions, and recent research into the polar aerobiome points toward a potentially dynamic polar microbial community and with it, the possibility of significant microbial activity within the snowpack (Redeker et al., 2017), even in the most remote locations (Pearce et al., 2009). Research into the aerobiome has also demonstrated that microorganisms in aerial fallout may remain both viable and active (Sattler et al., 2001; Harding et al., 2011). Furthermore, the presence of microbes in remote, low nutrient, low water, very cold environments such as polar glacial surfaces is now well established for a number of key sites (Hodson et al., 2008; Larose et al., 2010)

    Does accelerating universe indicates Brans-Dicke theory

    Full text link
    The evolution of universe in Brans-Dicke (BD) theory is discussed in this paper. Considering a parameterized scenario for BD scalar field ϕ=ϕ0aα\phi=\phi_{0}a^{\alpha} which plays the role of gravitational "constant" GG, we apply the Markov Chain Monte Carlo method to investigate a global constraints on BD theory with a self-interacting potential according to the current observational data: Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. It is shown that an expanded universe from deceleration to acceleration is given in this theory, and the constraint results of dimensionless matter density Ω0m\Omega_{0m} and parameter α\alpha are, Ω0m=0.2860.0390.047+0.037+0.050\Omega_{0m}=0.286^{+0.037+0.050}_{-0.039-0.047} and α=0.00460.01710.0206+0.0149+0.0171\alpha=0.0046^{+0.0149+0.0171}_{-0.0171-0.0206} which is consistent with the result of current experiment exploration, α0.132124\mid\alpha\mid \leq 0.132124. In addition, we use the geometrical diagnostic method, jerk parameter jj, to distinguish the BD theory and cosmological constant model in Einstein's theory of general relativity.Comment: 16 pages, 3 figure

    Love Mode Surface Acoustic Wave and High Fundamental Frequency Quartz Crystal Microbalance immunosensors for the detection of carbaryl pesticide

    Get PDF
    [EN] In this work we determined the Sensitivity (estimated as the I50 value) and Limit of Detection (LOD) for the immunodetection of carbaryl pesticide with two different types of acoustic wave sensors: High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) and Love Mode Surface Acoustic Wave (LM-SAW). Results were compared with others previously reported using different sensors and techniques, like traditional QCM, Surface Plasmon Resonance (SPR) and Enzyme-Linked ImmunoSorbent Assay (ELISA). We used the AWS-A10 research platform (AWSensors, Spain) to perform the experiments. We obtained I50 values of 0.31 μg/L and 0.66 μg/L, and LODs of 0.09 μg/L and 0.14 μg/L, for 120 MHz LM-SAW and 100 MHz HFF-QCM devices, respectively. Both the sensitivities and LODs of the immunosensors improved previously reported SPR and QCM results by one and two orders of magnitude, respectively, and reached those of ELISA.The authors acknowledge: the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF) for their financing support through the grant of the INNPACTO 2012 project (DETECTA IPT-2012-0154-300000) and J.V. García's Fellowship, ref. AP2007-03745 of the FPU (Formación de Profesorado Universitario) program; the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) for M.I. Rocha-Gaso's PhD CONACyT Fellowship.García Narbón, JV.; Rocha, M.; March Iborra, MDC.; García, P.; Francis, LA.; Montoya Baides, Á.; Arnau Vives, A.... (2014). Love Mode Surface Acoustic Wave and High Fundamental Frequency Quartz Crystal Microbalance immunosensors for the detection of carbaryl pesticide. Procedia Engineering. 87:759-762. https://doi.org/10.1016/j.proeng.2014.11.649S7597628

    The southern photometric local universe survey (S-PLUS): Improved SEDs, morphologies, and redshifts with 12 optical filters

    Get PDF
    The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8mrobotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 μm pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel-1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30° , 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, Hd, G band, Mg b triplet, Hα, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.Fil: De Oliveira, C. Mendes. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Ribeiro, T.. Universidade Federal de Sergipe; Brasil. National Optical Astronomy Observatory; Estados UnidosFil: Schoenell, W.. Universidade Federal do Rio Grande do Sul; BrasilFil: Kanaan, A.. Universidade Federal de Santa Catarina; BrasilFil: Overzier, R.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; BrasilFil: Molino, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Sampedro, L.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Coelho, P.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Barbosa, C.E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Cortesi, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Costa Duarte, M.V.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Herpich, F.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal de Santa Catarina; BrasilFil: Hernandez Jimenez, J.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Placco, V.M.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Xavier, H.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Abramo, L.R.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Saito, R.K.. Universidade Federal de Santa Catarina; BrasilFil: Chies Santos, A.L.. Universidade Federal do Rio Grande do Sul; BrasilFil: Ederoclite, A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: De Oliveira, R. Lopes. Universidade Federal de Sergipe; Brasil. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. University of Maryland; Estados UnidosFil: Goncalves, D.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Akras, S.. Ministério da Ciência, Tecnologia, Inovação e Comunicações. Observatório Nacional; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Almeida, L.A.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio Grande do Norte; BrasilFil: Almeida Fernandes, F.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Beers, T.C.. University of Notre Dame; Estados Unidos. JINA Center for the Evolution of the Elements ; Estados UnidosFil: Bonatto, C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Bonoli, S.. Centro de Estudios de Física del Cosmo de Aragon; EspañaFil: Cypriano, E.S.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Vinicius Lima, E.. Universidade do Sao Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas; BrasilFil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin

    The H4K20 demethylase DPY-21 regulates the dynamics of condensin DC binding

    Get PDF
    Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Unlike cohesin, in vivo regulators of condensin binding dynamics remain unclear. Here we addressed this question using C. elegans condensin DC, which specifically binds to and represses transcription of both X chromosomes in hermaphrodites for dosage compensation. Mutants of several chromatin modifiers that regulate H4K20me and H4K16ac cause varying degrees of X chromosome derepression. We used fluorescence recovery after photobleaching (FRAP) to analyze how these modifiers regulate condensin DC binding dynamics in vivo. We established FRAP using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. The greatest effect on condensin DC dynamics was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of the complex reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Separation of catalytic and non-catalytic activity is also supported by Hi-C data in the dpy-21 null mutant. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression
    corecore