4,787 research outputs found
Recommended from our members
Doubled haploid ramets via embryogenesis of haploid tissue cultures
Tissue culture in the oil palm business is generally concerned with the multiplication
(clonal production) of dura, pisifera and tenera palms. These are all normal diploids
(2n=2x=36). Sumatra Bioscience has pioneered haploid tissue culture of oil palm
(n=x=18). Haploid oil palm is the first step in producing doubled haploid palms
which in turn provide parental lines for F1 hybrid production. Chromosome doubling
is known to occur during embryogenesis in other haploid cultures, e.g. barley anther
culture. Haploid tissue cultures in oil palm were therefore set up to investigate and
exploit spontaneous chromosome doubling during embryogenesis. Flow cytometry of
embryogenic tissue showed the presence of both haploid (n) and doubled haploid (2n)
cells indicating spontaneous doubling. Completely doubled haploid ramets were
regenerated suggesting that doubling occurred during the first mitoses of
embryogenesis. This is the first report of doubled haploid production in oil palm via
haploid tissue culture. The method provides a means of producing a range of doubled
haploids in oil palm from the 1,000 plus haploids available at Sumatra Bioscience, in
addition the method also produced doubled haploid (and haploid) clones.
1
Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size
We compute the absorption efficiency (Qabs) of forsterite using the discrete
dipole approximation (DDA) in order to identify and describe what
characteristics of crystal grain shape and size are important to the shape,
peak location, and relative strength of spectral features in the 8-40 {\mu}m
wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical
polyhedral grain shapes with a_eff = 0.1 {\mu}m. The shape characteristics
identified are: 1) elongation/reduction along one of three crystallographic
axes; 2) asymmetry, such that all three crystallographic axes are of different
lengths; and 3) the presence of crystalline faces that are not parallel to a
specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids.
Elongation/reduction dominates the locations and shapes of spectral features
near 10, 11, 16, 23.5, 27, and 33.5 {\mu}m, while asymmetry and tips are
secondary shape effects. Increasing grain sizes (0.1-1.0 {\mu}m) shifts the 10,
11 {\mu}m features systematically towards longer wavelengths and relative to
the 11 {\mu}m feature increases the strengths and slightly broadens the longer
wavelength features. Seven spectral shape classes are established for
crystallographic a-, b-, and c-axes and include columnar and platelet shapes
plus non-elongated or equant grain shapes. The spectral shape classes and the
effects of grain size have practical application in identifying or excluding
columnar, platelet or equant forsterite grain shapes in astrophysical environs.
Identification of the shape characteristics of forsterite from 8-40 {\mu}m
spectra provides a potential means to probe the temperatures at which
forsterite formed.Comment: 55 pages, 15 figure
Method and apparatus for determining time, direction, and composition of impacting space particles
A space particle collector for recording the time specific particles are captured, and its direction at the time of capture, utilizes an array of targets, each comprised of an MOS capacitor on a chip charged from an external source and discharged upon impact by a particle through a tab on the chip that serves as a fuse. Any impacting particle creates a crater, but only the first will cause a discharge of the capacitor. A substantial part of the metal film around the first crater is burned off by the discharge current. The time of the impulse which burns the tab, and the identification of the target, is recorded together with data from flight instruments. The metal film is partitioned into pie sections to provide a plurality of targets on each of an array of silicon wafers, thus increasing the total number of identified particles that can be collected. It is thus certain which particles were captured at what specific times
Rationality and Evidence of Pre-Prepared Treatment Plan in Oesophageal HDR Brachytherapy
As a part of routine oesophageal HDR brachytherapy procedure, treatment planning takes about 45 minutes while patients are under light sedation. Some patients may suffer gagging and/or spasms, and the treatment may need to be aborted. A pre-prepared plan generated before the patient's sedation may reduce the brachytherapy procedure time by forty minutes. This paper reports the rationality and evidence of pre-prepared treatment plans. A retrospective study of 28 patients confirm that all of the pre-prepared plans would be acceptable. The rationality of pre-prepared HDR brachytherapy plans is further confirmed by a systemic study with a wide range of applicator curvature and treatment volume. Detailed comparison between CT based treatment plans and pre-prepared plans are discussed. This argument holds also for endobronchial HDR brachytherapy. With the above evidence, pre-prepared plans have been used for all oesophagus and bronchus HDR brachytherapy cases in our clinic
Computer-Generated Music for Tabletop Role-Playing Games
In this paper we present Bardo Composer, a system to generate background
music for tabletop role-playing games. Bardo Composer uses a speech recognition
system to translate player speech into text, which is classified according to a
model of emotion. Bardo Composer then uses Stochastic Bi-Objective Beam Search,
a variant of Stochastic Beam Search that we introduce in this paper, with a
neural model to generate musical pieces conveying the desired emotion. We
performed a user study with 116 participants to evaluate whether people are
able to correctly identify the emotion conveyed in the pieces generated by the
system. In our study we used pieces generated for Call of the Wild, a Dungeons
and Dragons campaign available on YouTube. Our results show that human subjects
could correctly identify the emotion of the generated music pieces as
accurately as they were able to identify the emotion of pieces written by
humans.Comment: To be published in the 16th AAAI Conference ON Artificial
Intelligence and Interactive Digital Entertainmen
Quantum and Thermal Phase Transitions of Halogen-Bridged Binuclear Transition-Metal Complexes
Aiming to settle the controversial observations for halogen-bridged binuclear
transition-metal (MMX) complexes, finite-temperature Hartree-Fock calculations
are performed for a relevant two-band Peierls-Hubbard model. Thermal, as well
as quantum, phase transitions are investigated with particular emphasis on the
competition between electron itinerancy, electron-phonon interaction and
electron-electron correlation. Recently observed distinct thermal behaviors of
two typical MMX compounds Pt_2(CH_3CS_2)_4I and
(NH_4)_4[Pt_2(P_2O_5H_2)_4I]2H_2O are supported and further tuning of their
electronic states is predicted.Comment: 5 pages, 3 figures embedded, to be published in J. Phys. Soc. Jpn.
Vol.70, No.5 (2001
Tawney and the third way
From the 1920s to the 1950s R. H. Tawney was the most influential socialist thinker in Britain. He articulated an ethical socialism at odds with powerful statist and mechanistic traditions in British socialist thinking. Tawney's work is thus an important antecedent to third way thinking. Tawney's religiously-based critique of the morality of capitalism was combined with a concern for detailed institutional reform, challenging simple dichotomies between public and private ownership. He began a debate about democratizing the enterprise and corporate governance though his efforts fell on stony ground. Conversely, Tawney's moralism informed a whole-hearted condemnation of market forces in tension with both his concern with institutional reform and modern third way thought. Unfortunately, he refused to engage seriously with emergent welfare economics which for many social democrats promised a more nuanced understanding of the limits of market forces. Tawney's legacy is a complex one, whose various elements form a vital part of the intellectual background to current third way thinking
Dynamic remodelling of synapses can occur in the absence of the parent cell body
<p>Abstract</p> <p>Background</p> <p>Retraction of nerve terminals is a characteristic feature of development, injury and insult and may herald many neurodegenerative diseases. Although morphological events have been well characterized, we know relatively little about the nature of the underlying cellular machinery. Evidence suggests a strong local component in determining which neuronal branches and synapses are lost, but a greater understanding of this basic neurological process is required. Here we test the hypothesis that nerve terminals are semi-autonomous and able to rapidly respond to local stimuli in the absence of communication with their parent cell body.</p> <p>Results</p> <p>We used an isolated preparation consisting of distal peripheral nerve stumps, associated nerve terminals and post-synaptic muscle fibres, maintained in-vitro for up to 3 hrs. In this system synapses are intact but the presynaptic nerve terminal is disconnected from its cell soma. In control preparations synapses were stable for extended periods and did not undergo Wallerian degneration. In contrast, addition of purines triggers rapid changes at synapses. Using fluorescence and electron microscopy we observe ultrastructural and gross morphological events consistent with nerve terminal retraction. We find no evidence of Wallerian or Wallerian-like degeneration in these preparations. Pharmacological experiments implicate pre-synaptic P2X7 receptor subunits as key mediators of these events.</p> <p>Conclusion</p> <p>The data presented suggest; first that isolated nerve terminals are able to regulate connectivity independent of signals from the cell body, second that synapses exist in a dynamic state, poised to shift from stability to loss by activating intrinsic mechanisms and molecules, and third that local purines acting at purinergic receptors can trigger these events. A role for ATP receptors in this is not surprising since they are frequently activated during cellular injury, when adenosine tri-phosphate is released from damaged cells. Local control demands that the elements necessary to drive retraction are constitutively present. We hypothesize that pre-existing scaffolds of molecular motors and cytoskeletal proteins could provide the dynamism required to drive such structural changes in nerve terminals in the absence of the cell body.</p
- …