2 research outputs found

    Radiochemical examination of transthyretin (TTR) brain penetration assisted by iododiflunisal, a TTR tetramer stabilizer and a new candidate drug for AD

    Get PDF
    It is well settled that the amyloidogenic properties of the plasma protein transporter transthyretin (TTR) can be modulated by compounds that stabilize its native tetrameric conformation. TTR is also present in cerebrospinal fluid where it can bind to Aβ-peptides and prevent Aβ aggregation. We have previously shown that treatment of Alzheimer’s Disease (AD) model mice with iododiflunisal (IDIF), a TTR tetramer stabilizing compound, prevents AD pathologies. This evidence positioned IDIF as a new lead drug for AD. In dissecting the mechanism of action of IDIF, we disclose here different labeling strategies for the preparation of 131I-labeled IDIF and 131I- and 124I-labeled TTR, which have been further used for the preparation of IDIF-TTR complexes labeled either on the compound or the protein. The biodistribution of all labeled species after intravenous administration has been investigated in mice using ex vivo and in vivo techniques. Our results confirm the capacity of TTR to cross the blood brain barrier (BBB) and suggest that the formation of TTR-IDIF complexes enhances BBB permeability of both IDIF and TTR. The increased TTR and IDIF brain concentrations may result in higher Aβ-peptide sequestration capacity with the subsequent inhibition of AD symptoms as we have previously observed in mice. © 2019, The Author(s).The work was supported by a grant from the Fundació Marató de TV3 (Neurodegenerative Diseases Call, Project Reference 20140330-31-32-33-34, http://www.ccma.cat/tv3/marato/en/ projectes-financats/2013/212/). The group at CIC biomaGUNE also acknowledges MINECO (Spain) for funding through Grant CTQ2017-87637-R. I. Cardoso worked under the Investigator FCT Program which is financed by national funds through the Foundation for Science and Technology (FCT, Portugal) and co-financed by the European Social Fund (ESF) through the Human Potential Operational Programme (HPOP), type 4.2 - Promotion of Scientific Employment.Peer reviewe

    Insights on the Interaction between Transthyretin and Aβ in Solution. A Saturation Transfer Difference (STD) NMR Analysis of the Role of Iododiflunisal

    No full text
    Several strategies against Alzheimer disease (AD) are directed to target Aβ-peptides. The ability of transthyretin (TTR) to bind Aβ-peptides and the positive effect exerted by some TTR stabilizers for modulating the TTR-Aβ interaction have been previously studied. Herein, key structural features of the interaction between TTR and the Aβ(12-28) peptide (3), the essential recognition element of Aβ, have been unravelled by STD-NMR spectroscopy methods in solution. Molecular aspects related to the role of the TTR stabilizer iododiflunisal (IDIF, 5) on the TTR-Aβ complex have been also examined. The NMR results, assisted by molecular modeling protocols, have provided a structural model for the TTR-Aβ interaction, as well as for the ternary complex formed in the presence of IDIF. This basic structural information could be relevant for providing light on the mechanisms involved in the ameliorating effects of AD symptoms observed in AD/TTR± animal models after IDIF treatment and eventually for designing new molecules toward AD therapeutic drugs. © 2017 American Chemical Society.The work was supported by a grant from the FundacióMarató de TV3 (Neurodegenerative Diseases Call, Project Reference 20140330-31-32-33-34, http://www.ccma.cat/tv3/marato/en/ projectes-financats/2013/212/). The group at CIC bioGUNE also acknowledges MINECO (Spain) for funding through Grant CTQ2015-64597-C2-1-P and a Juan de la Cierva contract to A.G. The group at IBMC-i3S also acknowledges funding through Grant Norte-01-0145-FEDER-000008-Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). I.C. works under the Investigator FCT Program which is financed by national funds through FCT and cofinanced by ESF through HPOP, Type 4.2, Promotion of Scientific Employment. M.A. is currently a recipient of a Research Fellowship (BIM) funded by the project of FundacióMarató de TV3, Spain, and L.M.S. is currently a recipient of a fellowship from Norte 2020. IQAC-CSIC acknowledges a contract to E.Y.C. funded by the project of FundacióMaratóde TV3, Spain.Peer reviewe
    corecore