10,666 research outputs found

    Cosmic magnetic fields and dark energy in extended electromagnetism

    Get PDF
    We discuss an extended version of electromagnetism in which the usual gauge fixing term is promoted into a physical contribution that introduces a new scalar state in the theory. This new state can be generated from vacuum quantum fluctuations during an inflationary era and, on super-Hubble scales, gives rise to an effective cosmological constant. The value of such a cosmological constant coincides with the one inferred from observations as long as inflation took place at the electroweak scale. On the other hand, the new state also generates an effective electric charge density on sub-Hubble scales that produces both vorticity and magnetic fields with coherent lengths as large as the present Hubble horizon.Comment: 4 pages, 2 figures. Contribution to the proceedings of Spanish Relativity Meeting 2010, Granada, Spain, 6-10 September 201

    Herschel observations of the circumstellar environment of the two Herbig Be stars R Mon and PDS27

    Full text link
    We report and analyse FIR observations of two Herbig Be stars, R Mon and PDS 27, obtained with Herschel's instruments PACS and SPIRE. We construct SEDs and derive the infrared excess. We extract line fluxes from the PACS and SPIRE spectra and construct rotational diagrams in order to estimate the excitation temperature of the gas. We derive CO, [OI] and [CI] luminosities to determine physical conditions of the gas, as well as the dominant cooling mechanism. We confirm that the Herbig Be stars are surrounded by remnants from their parental clouds, with an IR excess that mainly originates in a disc. In R Mon we detect [OI], [CI], [CII], CO (26 transitions), water and OH, while in PDS 27 we only detect [CI] and CO (8 transitions). We attribute the absence of OH and water in PDS 27 to UV photo-dissociation and photo-evaporation. From the rotational diagrams, we find several components for CO: we derive TrotT_{rot} 949±\pm90 K, 358±\pm20 K & 77±\pm12 K for R Mon, 96±\pm12 K & 31±\pm4 K for PDS 27 and 25±\pm8 K & 27±\pm6 K for their respective compact neighbours. The forsterite feature at 69μ\mum was not detected in either of the sources, probably due to the lack of (warm) crystalline dust in a flat disc. We find that cooling by molecules is dominant in the Herbig Be stars, while this is not the case in Herbig Ae stars where cooling by [OI] dominates. Moreover, we show that in the Herbig Be star R Mon, outflow shocks are the dominant gas heating mechanism, while in Herbig Ae stars this is stellar. The outflow of R Mon contributes to the observed line emission by heating the gas, both in the central spaxel/beam covering the disc and the immediate surroundings, as well as in those spaxels/beams covering the parabolic shell around it. PDS 27, a B2 star, has dispersed a large part of its gas content and/or destroyed molecules; this is likely given its intense UV field.Comment: Accepted for publication in Astronomy & Astrophysic

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    Sharp values for the constants in the polynomial Bohnenblust-Hille inequality

    Get PDF
    In this paper we prove that the complex polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in C2{\mathbb C}^2 is exactly 324\sqrt[4]{\frac{3}{2}}. We also give the exact value of the real polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in R2{\mathbb R}^2. Finally, we provide lower estimates for the real polynomial Bohnenblust-Hille constant for polynomials in R2{\mathbb R}^2 of higher degrees.Comment: 16 page

    Extensions of Superscaling from Relativistic Mean Field Theory: the SuSAv2 Model

    Get PDF
    We present a systematic analysis of the quasielastic scaling functions computed within the Relativistic Mean Field (RMF) Theory and we propose an extension of the SuperScaling Approach (SuSA) model based on these results. The main aim of this work is to develop a realistic and accurate phenomenological model (SuSAv2), which incorporates the different RMF effects in the longitudinal and transverse nuclear responses, as well as in the isovector and isoscalar channels. This provides a complete set of reference scaling functions to describe in a consistent way both (e,e)(e, e') processes and the neutrino/antineutrino-nucleus reactions in the quasielastic region. A comparison of the model predictions with electron and neutrino scattering data is presented.Comment: 19 pages, 24 figure

    Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations

    Get PDF
    Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C2_2 dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model C2vC_{2v} insertion pathway for BeH2_2. The variational excited state methodology developed in this work has two remarkable traits: it is fully black-box and will be applicable to fairly large systems thanks to its mean-field computational cost

    The Peierls substitution in an engineered lattice potential

    Full text link
    Artificial gauge fields open new possibilities to realize quantum many-body systems with ultracold atoms, by engineering Hamiltonians usually associated with electronic systems. In the presence of a periodic potential, artificial gauge fields may bring ultracold atoms closer to the quantum Hall regime. Here, we describe a one-dimensional lattice derived purely from effective Zeeman-shifts resulting from a combination of Raman coupling and radiofrequency magnetic fields. In this lattice, the tunneling matrix element is generally complex. We control both the amplitude and the phase of this tunneling parameter, experimentally realizing the Peierls substitution for ultracold neutral atoms.Comment: 6 pages, 5 figure

    Nuclear effects in neutrino and antineutrino CCQE scattering at MINERvA kinematics

    Get PDF
    We compare the charged-current quasielastic neutrino and antineutrino observables obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the Relativistic Mean Field approach, with the recent data published by the MINERvA Collaboration. Both models provide a good description of the data without the need of an ad hoc increase in the mass parameter in the axial-vector dipole form factor. Comparisons are also made with the MiniBooNE results where different conclusions are reached.Comment: 6 pages, 7 figures, Accepted for publication in Physical Review
    corecore