140 research outputs found

    Androgen deprivation decreases prostate specific antigen in the absence of tumor: implications for interpretation of PSA results

    Get PDF
    Background: Prostate-specific antigen (PSA) is used as an outcome measure for relapsed disease in prostate cancer. Nonetheless, there are considerable concerns about its indiscriminate use as a surrogate endpoint for cell growth or survival. We hypothesized that treatment with a luteinizing hormone releasing hormone (LHRH) analog would decrease PSA levels even in the absence of malignant disease. Methods: We determined testosterone and PSA levels in 30 healthy volunteers after a single intramuscular injection of a LHRH depot formulation. Testosterone and PSA levels were quantified by radioimmunoassay and electrochemi-luminescence immunoassay, respectively. Results: After an initial flare-up during the first 3 days testosterone decreased reaching castration levels in 18 of the 30 young men (60%). After the nadir on day 28, testosterone levels increased to normal again. Changes in PSA paralleled those of testosterone. Castration reduced PSA levels by 29% (95% CI 19%-39%) compared to baseline (p<0.0001). Conclusions: LHRH superagonists decrease PSA levels by testosterone deprivation. Conferring these findings to tumor patients, decreases in PSA after treatment with LHRH analogs might not only reflect disease regression but also a direct testosterone mediated effect on PSA. Thus, PSA levels should be cautiously interpreted when patients receive hormonal therap

    The von Willebrand factor A-1 domain binding aptamer BT200 elevates plasma levels of von Willebrand factor and factor VIII: a first-in-human trial

    Get PDF
    Von Willebrand factor (VWF) and factor VIII (FVIII) circulate in a noncovalent complex in blood and promote primary hemostasis and clotting, respectively. A new VWF A1-domain binding aptamer, BT200, demonstrated good subcutaneous bioavailability and a long half-life in non-human primates. This first-in-human, randomized, placebo-controlled, doubleblind trial tested the hypothesis that BT200 is well tolerated and has favorable pharmacokinetic and pharmacodynamic effects in 112 volunteers. Participants received one of the following: a single ascending dose of BT200 (0.18-48 mg) subcutaneously, an intravenous dose, BT200 with concomitant desmopressin or multiple doses. Pharmacokinetics were characterized, and the pharmacodynamic effects were measured by VWF levels, FVIII clotting activity, ristocetin-induced aggregation, platelet function under high shear rates, and thrombin generation. The mean half-lives ranged from 7-12 days and subcutaneous bioavailability increased dose-dependently exceeding 55% for doses of 6-48 mg. By blocking free A1 domains, BT200 dose-dependently decreased ristocetin-induced aggregation, and prolonged collagen-adenosine diphosphate and shear-induced platelet plug formation times. However, BT200 also increased VWF antigen and FVIII levels 4-fold (P<0.001), without increasing VWF propeptide levels, indicating decreased VWF/FVIII clearance. This, in turn, increased thrombin generation and accelerated clotting. Desmopressin-induced VWF/FVIII release had additive effects on a background of BT200. Tolerability and safety were generally good, but exaggerated pharmacology was seen at saturating doses. This trial identified a novel mechanism of action for BT200: BT200 dose-dependently increases VWF/FVIII by prolonging half-life at doses well below those which inhibit VWF-mediated platelet function. This novel property can be exploited therapeutically to enhance hemostasis in congenital bleeding disorders

    A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices

    Get PDF
    Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.Research in this publication was supported by the National Institutes of Health Small Business Innovation Research program under award number R44HL114246 as a subcontract to the University of Oklahoma from VADovations and NIH grant R21HL132286 to DWS and TAS. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye

    Dexamethasone Downregulates l

    No full text
    • …
    corecore