60 research outputs found

    Toll-Like Receptor 4 Signaling Pathway Mediates Inhalant Organic Dust-Induced Bone Loss.

    Get PDF
    Agriculture workers have increased rates of airway and skeletal disease. Inhalant exposure to agricultural organic dust extract (ODE) induces bone deterioration in mice; yet, mechanisms underlying lung-bone crosstalk remain unclear. Because Toll-like receptor 2 (TLR2) and TLR4 are important in mediating the airway consequences of ODE, this study investigated their role in regulating bone responses. First, swine facility ODE stimulated wild-type (WT) bone marrow macrophages to form osteoclasts, and this finding was inhibited in TLR4 knock-out (KO), but not TLR2 KO cells. Next, using an established intranasal inhalation exposure model, WT, TLR2 KO and TLR4 KO mice were treated daily with ODE or saline for 3 weeks. ODE-induced airway neutrophil influx and cytokine/chemokine release were similarly reduced in TLR2 and TLR4 KO animals as compared to WT mice. Utilizing micro-computed tomography (CT), analysis of tibia showed loss of bone mineral density, volume and deterioration of bone micro-architecture and mechanical strength induced by ODE in WT mice were significantly reduced in TLR4 but not TLR2 KO animals. Bone marrow osteoclast precursor cell populations were analyzed by flow cytometry from exposed animals. In WT animals, exposure to inhalant ODE increased osteoclast precursor cell populations as compared to saline, an effect that was reduced in TLR4 but not TLR2 KO mice. These results show that TLR2 and TLR4 pathways mediate ODE-induced airway inflammation, but bone deterioration consequences following inhalant ODE treatment is strongly dependent upon TLR4. Thus, the TLR4 signaling pathway appears critical in regulating the lung-bone inflammatory axis to microbial component-enriched organic dust exposures

    The Induction of Autoimmune Arthritis and Sex differences in Mice Impact the Lung Inflammatory Response to Repetitive Inhalant Organic Dust Extract Exposures

    Get PDF
    Asthma, chronic bronchitis and COPD are common adverse respiratory health effects among persons exposed to agriculture organic dust work environments. Occupational inhalant exposures have been increasingly associated with the risk of rheumatoid arthritis (RA) disease development, particularly among males. Agriculture workers have increased risk of RA and generalized bone disease. Chronic lung disease is associated with production of characteristic autoantibodies associated with RA (e.g.anti-citrullinated antibodies), even in absence of RA disease. The mechanistic link between pulmonary inflammation and arthritis (and vice versa) remains poorly understood. Animal models are lacking.https://digitalcommons.unmc.edu/emet_posters/1004/thumbnail.jp

    High-Throughput Analysis of Lung Immune Cells in a Combined Murine Model of Agriculture Dust-Triggered Airway Inflammation With Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet the mechanisms linking lung disease and RA remain unknown. Using an established murine model of RA-associated lung disease combining collagen-induced arthritis (CIA) with organic dust extract (ODE)-induced airway inflammation, differences among lung immune cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung myeloid-derived immune cell populations including macrophages, monocytes/macrophages, monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clusters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory, resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and recruited/differentiating macrophages were predominant with arthritis induction (CIA and CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3, Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1 and Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoimmune-, and complement-related genes might contribute towards pro-fibrotic inflammatory lung responses following airborne biohazard exposures in setting of autoimmune arthritis and could be predictive and/or targeted to reduce disease burden

    A randomized single blind crossover trial comparing leather and commercial wrist splints for treating chronic wrist pain in adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the effectiveness of a custom-made leather wrist splint (LS) with a commercially available fabric splint (FS) in adults with chronic wrist pain.</p> <p>Methods</p> <p>Participants (N = 25, mean age = 54) were randomly assigned to treatment order in a 2-phase crossover trial. Splints were worn for 2 weeks, separated by a one-week washout period. Outcomes were assessed at baseline and after each splint phase using the Australian/Canadian Osteoarthritis Hand Index (AUSCAN), the Canadian Occupational Performance Measure (COPM) and Jamar dynamometer by an observer blinded to treatment allocation.</p> <p>Results</p> <p>Both styles of wrist splint significantly reduced pain (effect size LS 0.79, FS 0.43), improved hand function and increased grip strength compared to baseline (all p < 0.05) with no increase in wrist stiffness. There was a consistent trend for the LS to be superior to the FS but this was statistically significant only for patient perceived occupational performance (p = 0.008) and satisfaction (p = 0.015). Lastly, 72% of patients preferred the custom-made leather splint compared to the commercially available splint.</p> <p>Conclusion</p> <p>Leather wrist splints were superior to a commercially available fabric splint for the short-term relief of pain and dysfunction.</p

    Preclinical Models for Neuroblastoma: Establishing a Baseline for Treatment

    Get PDF
    Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system.Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a "standard of care" chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents.The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer

    NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    Get PDF
    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS

    Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome)

    Get PDF
    Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9
    corecore