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Abstract

Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet
the mechanisms linking lung disease and RA remain unknown. Using an established murine
model of RA-associated lung disease combining collagen-induced arthritis (CIA) with
organic dust extract (ODE)-induced airway inflammation, differences among lung immune
cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung mye-
loid-derived immune cell populations including macrophages, monocytes/macrophages,
monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression
was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clus-
ters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory,
resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/
recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating
and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells
and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and
recruited/differentiating macrophages were predominant with arthritis induction (CIA and
CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes
were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3,
Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic
myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1and
Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and
inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoim-
mune-, and complement-related genes might contribute towards pro-fibrotic inflammatory
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lung responses following airborne biohazard exposures in setting of autoimmune arthritis
and could be predictive and/or targeted to reduce disease burden.

Introduction

Several lung diseases have been associated with rheumatoid arthritis (RA), including intersti-
tial lung disease (ILD), chronic obstructive pulmonary disease (COPD), pulmonary nodules,
pleural effusions, bronchiolitis obliterans, and asthma [1-3]. Affecting up to 40% or more of
RA patients, RA-associated lung diseases pose a substantial burden to healthcare systems
because of the increased morbidity and mortality, decreased quality of life, and tremendous
healthcare costs [2, 4, 5]. Evidence of RA-related autoantibodies generated in lung mucosa,
even in the absence of articular manifestations of RA [6], as well as increased concentrations of
serum anti-citrullinated protein antibody accompanying RA-related lung diseases [1, 4, 7],
reinforces the pathogenic links between pulmonary inflammation and autoimmunity leading
to the development of RA. Therapeutic options for RA-associated lung disease are limited [8],
and key cellular and/or mediators predictive of the development and/or progression of RA-
associated lung disease are lacking [9]. Thus, studies are warranted to investigate and identify
precise mechanisms underpinning these associations.

Exposure to environmental factors such as cigarette smoke represent shared risk factors in
the development of RA and inflammatory lung diseases [3, 10]. However, insight into how
inhalant injury might lead to or exacerbate RA and its pulmonary manifestations, has been
limited in the absence of a relevant disease model. Recently a pre-clinical animal model to pro-
vide insight into the important cellular players and decipher molecular and potential mecha-
nistic pathways involved in RA-associated inflammatory lung disease was established [11].
Specifically, the combination of the collagen-induced arthritis (CIA) model with a model of
airborne biohazard exposure (e.g. agriculture related-organic dust extract/ODE) resulted in
augmented arthritis inflammatory score and bone deterioration, increased systemic autoim-
munity with increased anti-cyclic citrullinated peptide IgG antibodies, and promotion of pre-
fibrotic inflammatory lung changes in mice [11] consistent with RA-associated lung disease
pathophysiology. However, the mechanisms underlying these observations are not known.
Here, we hypothesized that RA-associated lung disease is associated with unique cellular phe-
notypes and specific novel gene expression of in vivo exposed lungs. Leveraging this novel
murine model, single-cell RNA sequencing (scRNA-seq) and unsupervised clustering were
applied to lung immune cells among Sham, CIA, ODE, and CIA+ODE treatment groups to
explore exposure-related differences in cellular subsets, transcriptional profiles, and associated
biologic pathways. In separate complimentary studies to confirm key scRNA-seq findings,
lung myeloid-derived cells (i.e. monocytes/macrophages and granulocytes) were isolated and
subjected to gene-expression analysis.

Materials and methods
Animals

Arthritis prone DBA/1] male mice between 6-8 weeks of age were purchased from Jackson
Laboratory (Bar Harbor, ME) and fed alfalfa-free chow ad libitum (Envigo Teklad, Hunting-
don, Cambridgeshire, UK) as per supplier reccommendations. All animal procedures were
approved by the UNMC Institutional Animal Care and Use Committee (protocol #19-043-05)
and were in accordance with NIH guidelines for the use of rodents and has been described

PLOS ONE | https://doi.org/10.1371/journal.pone.0240707 February 12, 2021

2/27



PLOS ONE

RNA sequencing identifies unique cell populations in RA-related lung disease

previously [11]. All procedures on mice were done under isofluorane to minimize distress.
After every instillation or injection, animals were monitored consistently until they regained
consciousness and mobility. They were monitored every day once by the investigators and
once by the vivarium staff for any signs of discomfort or distress.

Organic dust extract

Organic dust extract (ODE) was prepared as previously reported [12] to model airway inflam-
matory disease. Briefly, an aqueous extract of organic dust from swine confinement feeding
facilities (microbial-enriched agriculture setting) was prepared by incubating 1 g dust in 10 ml
sterile Hank’s Balanced Salt Solution (Mediatech, Manassas, VA) for 1 hour at room tempera-
ture followed by centrifugation for 10 minutes at 2,850 x g and repeated twice. The end super-
nate was filter-sterilized with a 0.22 um syringe filter to remove any microorganisms and
coarse particles. Constituents of the extract have been well characterized and include both
endotoxin and peptidoglycans [11, 12]. ODE stock was prepared and stored at -20°C in
batches; aliquots were diluted for each experiment to a final concentration (vol/vol) of 12.5%
in sterile phosphate buffered saline (PBS; pH = 7.4). Endotoxin concentrations ranged from
150-175 EU/mL as determined using the limulus amebocyte lysate assay (Lonza, Walkersville,
MD). This concentration of ODE has been previously shown to produce optimal experimental
effects and is well-tolerated in mice [11, 12].

Animal co-exposure model

The protocol for the co-exposure model has been previously described [11]. Briefly, mice were
age-matched and randomized to 4 treatment groups: Sham (saline injection, saline inhalation),
collagen-induced arthritis (CIA; CIA injection, saline inhalation), ODE (saline injection, ODE
inhalation), and CIA + ODE (CIA injection, ODE inhalation). CIA was induced with two sub-
cutaneous tail injections (100 pg) of chick type II collagen (2 mg/ml) emulsified in Freund’s
complete adjuvant (FCA) on day 1 and in Freund’s incomplete adjuvant (IFA) on day 21.
Sham injections and saline inhalation were conducted with sterile PBS. Following an estab-
lished protocol, 50 pl of intranasal saline or 12.5% ODE daily for 5 weeks (weekends excluded)
was used to induce airway inflammatory disease [11, 12]. Mouse treatment groups were ran in
parallel with euthanization occurring 5 weeks after initiation of treatments.

Arthritis evaluation

Arthritis inflammatory scores were assessed weekly using the semiquantitative, mouse arthritis
scoring system provided by Chondrex (www.chondrex.com) as previously described [11].
Scores range from 0 (no inflammation) to 4 (erythema and severe swelling encompassing
ankle, foot, and digits). Arthritis evaluation was assessed on 8 mice per treatment group from
3 independent studies.

Lung histopathology

Lung sections of Sham, CIA, ODE, and CIA+ODE treatment groups previously obtained [11]
were stained with H&E or with anti-CD3 (1:100, Cat#ab5690, Lot#GR3356033-2), anti-CD68
(1:50, Cat#ab31630, Lot#GR3305929-3), and anti-MPO (1:25, Cat#ab9535, Lot#GR331736-4)
from Abcam (Cambridge, MA), anti-CD45R (1:40, Cat#14-0452-82, Lot#2178350) from Invi-
trogen (Grand Island, NY), and anti-CCR2 (1:100, Cat# NBP267700, Lot# HMO537) from
Novus Biologicals (Centennial, CO). Cross absorbed (H+L) goat anti-rabbit (Cat#A32731,
Lot#UK290266), goat anti-mouse (Cat#A32727, Lot#UL287768) and goat-anti rat
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(Cat#A21434, Lot#2184321) from Thermo Fisher, Grand Island, NY) were used at 1:100 dilu-
tion as secondary antibodies. Slides were mounted with VECTASHIELD® Antifade Mount-
ing Medium with DAPI (Cat#H-1200, Lot#ZG1014, Burlingame, CA) and visualized under
Zeiss fluorescent microscope.

Single-cell RNA sequencing

For these studies, 2 mice per treatment group were euthanized with isoflurane in a desiccator.
Lungs were exposed from the thoracic cavity and perfused with 10 ml heparin-PBS [11]. Har-
vested lungs were dissociated with gentleMACS dissociator (Miltenyi Biotech, Auburn, CA) in
a digestion solution (collagenase I, 0.2 pg/pl + DNase I, 75 U/ml + heparin, 1.5 U/ml, in Dul-
becco’s Modified Eagle’s Media; DMEM) and incubated for 30 minutes at 37°C in a shaking
incubator. Digestion solution activity was neutralized with PBS containing 4 mM EDTA. Red
blood cells were lysed with 1 ml ammonium-chloride-potassium (ACK) lysis buffer (Quality
Biological, Gaithersburg, MD) for 1 minute and neutralized with ice-cold DMEM (Gibco).
Cells were processed for RNAseq in FACS buffer (2% fetal bovine serum (FBS) + 0.1% NaNj
in PBS). All reagents purchased from Sigma unless otherwise specified.

Single cell suspensions generated from whole lung were quantified and viability tested
using a LUNA-FL™ Dual Fluorescence Cell Counter (Logos Biosystems, Annandale, VA).
Single cells were then isolated from cell suspensions (100-2,000 cells/ul) using a 10x Chro-
mium controller per manufacturer’s suggested protocol (10x Genomics, Pleasanton, CA). Fol-
lowing cell capture, the gel beads in emulsion (GEM)/sample solution was recovered and
placed into strip tubes. Reverse transcription was performed on a thermocycler (C1000
Touch™ Thermal Cycler, Bio-Rad, Hercules, CA) per recommended protocol followed by
c¢DNA amplification. Amplified products were solid phase reversible immobilization (SPRI)
bead-purified and evaluated by Fragment Analyzer (Agilent, Santa Clara, CA). Twenty-five
percent of the cDNA volume was subjected to fragmentation and double-sided SPRIselect
(Beckman Coulter, Indianapolis, IN) was used for PCR purification and clean-up. After adap-
tor ligation, SPRI clean-up was performed and PCR amplification using sample specific
indexes for each sample was completed. PCR products were purified, quantified and library
size distribution determined by Fragment Analyzer. Libraries were sequenced per the manu-
facturer’s suggested parameters on a NextSeq500 sequencer to an average depth of 50,000
reads per cell.

Single-cell RNA sequencing data processing

Basecall files (BCL) were generated through 10xGenomics Chromium Single cell 3’ Solution
followed by RNA Sequencing using Nextseq 500 and Nextseq 550. Cellranger mkfastq was used
for demultiplexing and to convert BCL files into FASTQ files. FASTQ files were run through
Cellranger count to perform alignment (using STAR aligner), filtering, and unique molecular
identifier (UMI) counting. Chromium cellular barcodes were used to generate gene-barcode
matrices, perform clustering, and do gene expression analyses. Cellranger aggr was used to nor-
malize and pool the results from different samples, followed by the application of Principal
Components Analysis (PCA) to change the dimensionality of the datasets. t-SNE (t-Stochastic
Neighbor Embedding) was used to visualize the data in a 2-D space. Graph-based unsuper-
vised clustering was then used to cluster the cells. We used Loupe browser [13], R packages
including cellranger R-kit [14], complex heatmap [15], and Geom_violin [16] for more in-
depth analysis to compare genes expression in each cluster compared to all the other clusters
and plot the data. The data sets have been deposited to the Gene Expression Omnibus (GEO)
database with access number GSE155436.
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Lung cell sorting

In separate studies with 8 mice per treatment group from 3 independent studies and following
mouse euthanasia and lung perfusion, lungs were inflated with 1 ml digestion solution/mouse
containing 0.5 mg/ml Liberase™ (medium Thermolysin concentration; Millipore Sigma,

St. Louis, MO) and 235.5 U/ml DNAse I in Hank’s Balanced Salt Solution (pH = 7.2). Inflated
lungs were dissociated with gentleMACS dissociator (Miltenyi Biotech, Auburn, CA) and
incubated for 15 minutes at 37°C in a shaking incubator. Digestion solution activity was neu-
tralized with FA3 buffer (10mM HEPES, 2mM EDTA, 1% FBS in PBS). The single cell lung
suspensions were incubated with CD16/32 (Fc Block, Cat#101320, Lot#B276722) Biolegend,
San Diego, CA) to minimize nonspecific antibody staining. Next, cells stained with mAbs
directed against rat anti-mouse CD45 (clone 30-F11, Cat#563053, Lot#8330943), Ly6C (clone
AL-21, Cat#560596, Lot#9267106), Ly6G (clone 1A8, Cat#551461, Lot#21331), CD11b (clone
M1/70, Cat#550993, Lot#8232762), and hamster anti-mouse CD11c (clone N418, Cat#61-
0114-82, Lot#2133313, Invitrogen, Eugene, OR), and live/dead fixable blue dead cell stain kit
(Invitrogen, Eugene, OR). Antibodies to CD11c from Invitrogen, and the remainder from BD
Biosciences (San Jose, CA). Flow-sorting was done with FACSAria II (BD Biosciences). Live
CD45" singlets were gated on Ly6C Ly6G™ to sort neutrophils. Lymphocytes (based on FSC
and SSC) and neutrophils (based on Ly6C and Ly6G staining) were then reverse gated to fur-
ther select for 3 monocyte/macrophage populations: macrophage (CD11c™¢", CD11b¥"2bk),
monocytes-macrophages (CD1 [ cintermediate o1y 1phi8h) and monocytes (CD11c, CD1 1bhishy,
This gating strategy for monocyte/macrophage populations is consistent with previous reports
by us and others [17-20].

RNA isolation

The 4 cell-sorted populations were counted, assessed for viability by trypan blue exclusion
(>95%), washed and lysed with RLT buffer containing B-mercaptoethanol for RNA isolation
as per manufacturer’s instructions with Qiagen RNAeasy Micro Kit (Qiagen, Germantown,
MD).

NanoString nCounter system

Quality and quantity of total RNA was evaluated using a Fragment Analyzer (Agilent, Santa
Clara, CA) and Nanodrop (ThermoFisher), respectively. Total RNA (25-50 ng) was hybridized
and processed per the manufacturer’s suggested protocol with capture and reporter probes to
prepare target-probe complexes using reagents from the Mouse Autoimmune profiling panel
containing 771 genes (NanoString, Seattle, WA). Complexes were purified, immobilized and
aligned on a cartridge for counting on the nCounter system and processed as per the manufac-
turer’s instructions.

For NanoString analyses, three independent studies of 2-3 pooled mice per group/experi-
ment (N = 8 total mice/group) were analyzed by ANOVA with Tukey’s multiple comparisons
test. Arthritis inflammatory scores over time was also analyzed by ANOVA. Gene expression
data were normalized to 20 housekeeping genes, treatment groups (CIA, ODE and CIA
+ODE) were compared to Sham, and data plotted as fold-change. ANOVA with Tukey’s mul-
tiple comparison test was used on myeloid-derived suppressor cell (MDSC) posthoc analysis.
Bar graphs were used to depict means with standard errors of the ratio change in MDSCs nor-
malized to Sham (percentile of MDSC treatment group divided by percentile of MDSC Sham
group). Statistical analyses were performed using the GraphPad Prism software, version 8.4.3
(GraphPad, San Diego, CA), and statistical significance accepted at p-values <0.05.
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Results

Agriculture (swine) exposure-related ODE-induced airway inflammation
coupled with arthritis modeling

Consistent with the previously published study describing this model system [11], the highest
arthritis inflammatory scores were demonstrated for CIA+ODE at 5 weeks (Fig 1A). Through-
out the 5 weeks, arthritis inflammatory scores were recorded weekly, and as early as 1 week,
there were increases in arthritis inflammatory scores in CIA+ODE and CIA alone as compared
with Sham. At 4 weeks, there were significant increases in ODE alone. Previous lung pathology
investigations [11] reported increases in alveolar and bronchiolar compartment inflammation
and increases in cellular aggregates with ODE and CIA+ODE as compared to Sham, but the
number and size of cellular aggregates were reduced in CIA+ODE as compared to ODE alone.
Instead, pro-lung fibrosis mediators including lung hyaluronan and fibronectin were increased
in CIA+ODE as compared to ODE alone [11]. In these current studies, lung sections from the
previous study were stained with H&E from each treatment group showing increased inflam-
mation in CIA+ODE (Fig 1B). Sections were also stained with markers to identify macro-
phages (CD68), neutrophils (MPO), T cells (CD3), and B cells (CD45R) (Fig 1C and 1D)
distributed in the parenchyma, peribronchiolar and perivascular region. Infiltration of
recruited CCR2" inflammatory monocytes was also demonstrated in the CIA and ODE
groups, and these cells were further potentiated in the CIA+ODE group (Fig 1E and 1F).

-® Sham
= CIA
-+ ODE
- CIA+ODE

Arthritis Inflammatory Score >

(¢}

E CIA+ODE F

1105 x
axtot
6xt0¢ wrr
axtoe

2x10¢

CCR2 Mean Pixel Density

Saline ODE  CIA ODE+CIA

Fig 1. Agriculture (swine) exposure-related Organic Dust Extract (ODE) induced airway inflammation coupled
with Collagen Induced Arthritis (CIA) model. (A) Line graph depicts mean with SE bars of arthritis inflammatory
score at respective time points from treatment groups. Statistical difference versus sham denoted as “a” (p<0.05);
versus ODE denoted “b” (p<0.05); versus CIA denoted as “c” (p<0.05) as determined by two-way ANOVA. N =8
mice/group from 3 independent studies. (B) Representative H&E-stained lung section from each treatment group at
10 X magnification with line scale (100 pixels). Representative images of lungs of CIA+ODE at 40x (parenchyma and
peribronchiolar/perivascular regions), immunostained with CD3 (T cells) and CD45R (B cells) (C), and
myeloperoxidase (MPO, neutrophils) and CD68 (macrophages) (D). Zoomed images highlight B-cell-T-cell
interaction (C) and macrophages with neutrophils (D). CCR2+ inflammatory monocytes were increased with ODE
and CIA treatment conditions in murine lungs. (E) Representative image of CCR2 expression (yellow) of lung tissue
from each treatment group. (F) Bar graph depicts mean with standard error bars of CCR2 staining (N = 5/group).
Statistical difference ***p<0.001 vs. saline/sham control and ###p<0.001 denoted by line between groups.

https://doi.org/10.1371/journal.pone.0240707.g001
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These studies lay the foundation for current studies delineating cellular and gene determina-
tions through high-throughput analysis.

ScRNA-seq identifies 14 unique immune cell subsets

The 10x genomics platform was utilized to cumulatively capture all lung cells. In total,
16,822 cells were analyzed with a mean of 42,901 post-normalization reads per cell and 956
median genes per cell. Unsupervised clustering was performed on 11,577 CD45" cells and
plotted on t-distributed Stochastic Neighbor Embedding (t-SNE). Projection of cells was
colored based on unique molecular identifier (UMI) count to identify level of transcripts
among the cells. The average UMI count range was roughly between 2,000 to 12,000. Cells
that were distributed in the middle showed the highest level of transcripts while cells at the
top showed the lowest level (Fig 2A). Unsupervised clustering on the t-SNE projected cells
revealed 14 unique immune cell subsets coded by different colors and arbitrary numbers
(Fig 2B). Clusters 3, 4 and 8 were identified as neutrophil subsets based on distribution of
Csf3r (granulocyte colony stimulating factor receptor [21]) in t-SNE analysis (Fig 2C). Mac-
rophages were distributed in the middle and were identified with Cd11c (ITGAX) expres-
sion in clusters 1, 2, 5, 11, 14, and partially in cluster 10. Monocytes (inflammatory
monocytes) were identified with F13al expression in cluster 12. Cluster 9 showed high lev-
els of Ccl5 expression suggesting the presence of NK cells. Similarly, CdI19 expressing cells
in cluster 7 identified B lymphocytes, and Trbc2 expression in clusters 6 and 13 identified T
lymphocytes, along with expression in the NK cell population (cluster 9). Dendritic cells
(DCs) were located in cluster 10 and were characterized by Siglech expression, particularly
evident in cluster 10a (Fig 2C).

A t-SNE Projection of Cells Colored by UMI Count B tsNE Projection of Cells Colored by Automated Clustering

40 1-1,960 cells

2-1,868 cells
3-1,231 cells
41,077 cells
5- 877 cells

+ 6-862cells
7-823 cells
8- 771 cells
9 - 451 cells
10 - 404 cells

© 11-379 cells
12 - 371 cells

© 13-318cells

2k - 7 © 14185 cells

t-SNE2
t-SNE2

-40 -3 20 -0 0 10 2 30 40
t-SNEL

C Csf3r Cd11c/itgax F13a1

Trbc2 Cd19 Ccl5 Siglech

Fig 2. Unsupervised single-cell transcriptional profiling of lung CD45" cells identifies 14 unique clusters among
Sham, CIA, ODE, and CIA+ODE treatment groups. Lung immune cells were isolated from mice (N = 2 mice/group)
treated with Sham, CIA, ODE and CIA+ODE. (A) T-distributed stochastic neighbor embedding (¢-SNE) plot shows
projection of unique molecular identifier (UMI) count among cell clusters. (B) Distribution of cells by unsupervised
clustering in t-SNE showing lung immune cell populations. (C) Major lung cell types identified by signature genes
including Csf3r (neutrophils), Cd11c/Itgax (macrophages), F13al (monocytes), Trbc2 (T lymphocytes), Cd19 (B
lymphocytes), Ccl5 (NK cells), and Siglech (dendritic cells).

https://doi.org/10.1371/journal.pone.0240707.9002
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CIA and ODE drive unique distributions of immune cells within identified
clusters

The 4 treatment groups (Sham, CIA, ODE, and CIA+ODE) exhibited unique distributions of
lung immune cells among the identified clusters (Fig 3A and 3B). Among the neutrophil clus-
ters, Sham was exclusively represented by cluster 4, but not cluster 3 or 8. In contrast, the CIA
group almost entirely showed neutrophil distribution in cluster 3. The ODE group demon-
strated selective distribution of neutrophils in cluster 8 with overlap into cluster 4. In the com-
bination exposure CIA+ODE group, there was broader distribution of neutrophils with
predominance in cluster 3, but also evidence for distribution in cluster 4 and partially in clus-
ter 8 (Fig 3A and 3B).

Based on the shifts observed in the cell populations among treatment groups, a manual sub-
clustering was performed to delineate exact number of cells distributed among the sub-clusters
(Fig 3C). Among the macrophage clusters, the ODE group had prevalence in clusters 5, 1b and
1c compared to the CIA group. Likewise, the ODE group lacked clusters 1a and 2a. A subset of
cluster 12 (12b) and cluster 10 (10b) were [22] unique to the CIA group, while clusters 10a and
12a were unique to the ODE group (Fig 3). The combination group with CIA+ODE showed a
mixed population representing CIA and ODE, while leaning more towards the CIA group (Fig
3).

Lymphocyte populations were confined to clusters 6, 7, 9, and 13, and were represented in
all treatment groups, although modest shifts in cell population distribution were observed.
Particularly, NK cells (cluster 9) and B cells (cluster 7) were differentially expressed in ODE
and CIA treatment groups with apparent shifts from cluster 9a in ODE to cluster 9b in CIA
and shifts from cluster 7a in ODE to cluster 7b in CIA, respectively (Fig 3). Similar to the mac-
rophage clusters, the CIA+ODE group portrayed CIA and ODE group while inclining more
towards the CIA group (Fig 3).

Three distinct neutrophil populations revealed by scRNA-seq among
treatment groups

Unsupervised clustering segregated 3 populations of granulocytes/neutrophils that were
marked by unique gene expression (Fig 4A). Relative gene-expression compared to all other
cell populations as log2 fold-change was plotted in a heat map (Fig 4B) and violin plot (Fig 4C)
to compare transcript levels as well as cell distributions at different expression levels. Cluster 8
showed increased expression of inflammatory genes such as Ccl3, Ccl4, Cxcl2, UppI and
Marcksl (log2 fold-change range: 4.98-6.35), which are genes commonly upregulated in

Sham CIA | obE [ CIA+ODE Number of cells
A B C & o &
o
8 B w0
4 b
9a 3 o -
9b : o0

2a 16 d fr— 00

14 - 20

7b 13

Fig 3. Distribution of aggregated gene clusters among treatment groups. Sham, CIA, ODE and CIA+ODE
treatment groups demonstrate differences in cell distribution among 14 gene clusters. Sham is represented by red, CIA
by green, ODE by teal, CIA+ODE by blue. (A) tSNE plot with all the treatment groups merged with respective colors
(B) Treatment groups are plotted individually with their respective colors to show cell distribution. (C) Heatmap
shows number of cells per sub-cluster among treatment groups by manual sub-clustering (total cells = 11,577).

https://doi.org/10.1371/journal.pone.0240707.9003
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Fig 4. Neutrophil populations segregated by unsupervised clustering relate to cell-programming among
treatment groups. (A) Heatmap shows the top 120/N upregulated genes for 3 distinct neutrophil clusters ranked by
log2 fold-change, where N = total number of clusters. (B) Top 5-10 genes of the three neutrophil clusters plotted in
heatmap to show differences and gene names in transcript levels. (C) Violin plots show expression with population
distribution among inflammatory neutrophils, represented by blue (cluster 8), resident/transitional neutrophils,
represented by green (cluster 4) and granulocytic myeloid-derived suppressor cells (gMDSC)/autoreactive neutrophils,
represented by red (cluster 3). The y-axis indicates normalized expression value, log2 (average UMI count + 1). (D)
Representative gene from each neutrophil cluster showing their distribution in t-SNE.

https://doi.org/10.1371/journal.pone.0240707.9004

activated neutrophils (Fig 4B and 4C, and S1 Table) [23-27]. Moreover, cluster 8 was exclusive
to the ODE group. In contrast, cluster 3 exhibited increased expression of genes associated with
immunosuppression and autoreactivity as well as genes that are characteristic of granulocytic
MDSC (gMDSC) such as $100a8, S100a9, Mmps8, Ifit3b, Ifit3, Cd33, Cd52 and Stfa2l1 (log2 fold-
change range: 5.16-6.03) (Fig 4B and 4C, and S1 Table) [28-34]. Based on the gene expression
profiles, cluster 8 was identified as “inflammatory neutrophils” and cluster 3 was identified as
“eMDSC/autoreactive neutrophils”. Intermediate to the two cell subsets, another neutrophil sub-
set (cluster 4) was identified as resident/transitional neutrophils. This population of neutrophils
(Fig 4B and 4C, and S1 Table) demonstrated increased expression of Csf3r, Il1r2, Slc40al, Cxcr2,
and Lmnb1 genes (log2 fold-change range: 3.91-4.24) that are required in neutrophil differentia-
tion and trafficking [21, 35-40]. Neutrophils in the CIA+ODE group was distributed more like
the CIA than the ODE group with predominant segregation in clusters 3 and 4 (Fig 3).

Signature genes were selected to highlight respective neutrophil populations on the t-SNE
plot (Fig 4D). Ccl3 was selected to highlight “inflammatory neutrophil” as Ccl3 enhances
recruitment and activation of neutrophils in a paracrine fashion [23, 24]. Because Il1r2 gene
encodes for type 2 interleukin-1 receptor and is constitutively expressed in mouse neutrophils
[35], it identified all subsets of neutrophils in the t-SNE clusters (Fig 4D). Autoreactive neutro-
phils/gMDSCs were exclusively positive for Mmp8 and Ifit3 in t-SNE. Mmp8 is a neutrophil col-
lagenase [41, 42] and Ifit3 codes for interferon induced protein with tetratricopeptide repeats 3,
as both are highly upregulated in gMDSCs and can suppress immune response [31, 32].

Identification of unique macrophage/monocyte/DC populations

Based on gene expression patterns among segregated populations found with unsupervised
clustering, 5 discrete macrophage clusters, 1 inflammatory monocyte cluster, and 1 DC cluster
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Fig 5. Differences in transcript levels among monocyte-macrophages and dendritic cell (DC) populations. (A)
Heatmap shows the top 120/N upregulated genes for 7 macrophages/monocytes and DC clusters ranked by log2 fold-
change, where N = total number of clusters. (B) Heatmap showing differences among top 5 genes with gene names of
the macrophages/monocytes and DC populations. (C) Expression levels with violin plots among airspace macrophages
(red, cluster 1), differentiating/recruited macrophages (brown, cluster 2), recruited macrophages (green, cluster 5),
resident/interstitial macrophages (teal, cluster 11), proliferative airspace macrophages (light blue, cluster 14),
inflammatory monocytes (lavender, cluster 12), dendritic cells (pink, cluster 10). The y-axis indicates normalized
expression value, log2 (average UMI count + 1). (D) Distribution of respective cell populations by a representative
gene in t-SNE plot.

https://doi.org/10.1371/journal.pone.0240707.9005

were identified (Fig 5A). Cluster 1 was termed “airspace macrophages” based on increased
expression (log2 fold-change range: 1.52-1.98) of Earl, Ear2, Ltc4s, Fabpl and Lyz2 compared
to other clusters (Fig 5B-5D), representing genes responsible for metabolism and inflamma-
tion/resolution [43-47] (S2 Table). Cluster 2 was labeled as “differentiating/recruited macro-
phages” as this cluster exhibited the highest expression (log2 fold-change range: 1.27-1.54) of
Netl, Tcf712, Abcgl, Pla2gl5 and Mrcl representing genes implicated in differentiation, anti-
gen uptake, and macrophage recruitment [48-52] (Fig 5B-5D). Cluster 2 macrophages
expressed genes associated with alternatively activated macrophages (M2 macrophages) [49
52], and upregulate pathways for lipoprotein metabolism and redox signaling (S2 Table). Clus-
ter 5 was identified as “recruited macrophages” based on the disproportionate expression (log2
fold-change range: 1.5-1.96) of Inhba, Cxcl3, Hmox1, Tgm2, and Car4 (Fig 5B-5D). Cluster 5
was heterogeneous with Inhba representing classically activated (M1) macrophages or Hmox1
as M2 macrophages, and also included genes that are involved in inflammation, adipogenesis,
homeostasis and phagocytosis [53-62] (S2 Table).

Sham, CIA and CIA+ODE groups showed similar distribution of airspace (particularly
cluster 1a) and recruited macrophages (especially cluster 2a) while the ODE group had a sub-
stantial reduction in these macrophage populations with segregation towards the center of the
t-SNE plot in clusters 1b and 1c (Fig 3).

Cluster 11 was designated as “resident interstitial macrophages” with high transcript levels
of Apoe, Ccl2 and complement genes such as Clqc, Clgb and Clga (Fig 5B-5D) ranging from
log2 fold-change of 3.54-3.91. This population also displayed heterogeneity with expression of
both M1 and M2 genes [47, 63-67] involved in inflammation and resolution (S2 Table). Resi-
dent interstitial macrophages were more evident in the ODE compared to other treatment
groups (Fig 3).

As reported by Mould et. al. [68], we also identified a distinct cluster of macrophages (clus-
ter 14) with very high expression of proliferative and mitotic genes (log2 fold-change range:
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5.79-8.12) including Nusap1, Top2a, Birc5, Pclaf, and Mki67 (Fig 5B-5D), which were termed
“proliferative airspace macrophages.” The upregulated pathways included cell-cycle, mitosis or
proliferation-related pathways (S2 Table) [68-70]. These proliferative airspace macrophages
were represented largely by the ODE and CIA+ODE groups (Fig 3).

Cluster 12 represented a unique cell population identified as “inflammatory monocytes.”
This population exhibited increased expression of F13al, Msda4c, Ly6c2, Plac8 and Ccr2 (Fig
5B-5D) (log2 fold-change range: 4.65-6.53), all characteristically expressed in inflammatory
monocytes and often correlated with anti-viral and/or autoimmune responses [71-79].
Although CIA+ODE group had a pronounced cluster 12, 12b represented the CIA group and
ODE group exhibited cluster 12a (Fig 3). A cell population in cluster 10 was identified demon-
strating elevated expression in genes (log2 fold-change range: 2.61-6.48) of Siglech, Tcf4,
Rnase6, Pou2f2 and Bst2 (Fig 5B-5D), which are distinctive of DCs [80-86]. This population
demonstrated characteristics of plasmacytoid DCs involving genes associated with innate
immunity and anti-inflammatory pathways. The DC predominated with ODE and CIA+ODE
groups in cluster 10a, whereas cluster 10b predominated with Sham (Fig 3). Overall, CIA
+ODE group distribution of monocyte-macrophages followed neutrophils with overrepresen-
tation of CIA group (Fig 3).

Lymphocytes segregate in four clusters among treatment groups

Four discrete lymphocyte clusters were found in the analysis (Fig 6A). Cluster 6 was identified
as “T lymphocytes”, with increased expression (log2 fold-change range: 4.87-7.04) of LefI,
Igfop4, Tcf7, Cd3d, and Cd3e (Fig 6B-6D). This population favored type 2 CD4" cells based
upon the expression of differentiating or expanding population of T lymphocytic genes [87-
91]. Cluster 6a was more represented by Sham whereas cluster 6b was represented by CIA and
CIA+ODE treatment groups. The ODE group had sparse distribution between cluster 6a and
6b (Fig 3). In contrast to cluster 6, cluster 13 exhibited increased expression of genes indicative
of activated T lymphocytes including Icos, Thyl, Cd3g, Ikzf2 and Maf (log2 fold-change range:
4.87-5.87) and thus were termed as “effector T lymphocytes” (Fig 6B-6D) with upregulation
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Fig 6. Four discrete lymphocyte populations suggest heterogeneity among treatment groups. (A) Heatmap shows
the top 120/N upregulated genes for 5 distinct lymphocyte clusters ranked by log2 fold-change, where N = total
number of clusters. (B) The top 5 genes with gene names of each lymphocyte cluster are shown in heatmap. (C) Violin
plots show variability in transcript levels among cell populations including T lymphocytes (red, cluster 6), effector T
lymphocytes (green, cluster 13), B lymphocytes (teal, cluster 7) and natural killer cells (lavender, cluster 9). The y-axis
indicates normalized expression value, log2 (average UMI count + 1). (D) Representative genes from each cluster show
their distribution in t-SNE plot.

https://doi.org/10.1371/journal.pone.0240707.9006
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of co-stimulatory and adaptive immune pathways. Subtle differences were observed in the dis-
tribution of activated T lymphocytes among the treatment groups (Fig 3).

Cluster 7 was remarkable for increased gene expression characteristic of B lymphocytes
such as Ebfl, Cd79a, Ms4al, Cd79b and Ighd (log2 fold-change range: 7.29-7.77) (Fig 6B-6D).
Along with genes implicated in B-cell differentiation, memory, signaling and autoimmunity,
this cluster showed striking similarities with upregulated pathways in the T lymphocyte popu-
lation (S3 Table) [92-95]. B lymphocytes had an overall distribution in CIA+ODE group, but
largely represented as cluster 7b in the CIA group. The ODE group had very few B lympho-
cytes with sparse distribution (Fig 3).

NK cell-specific gene expression was increased in cluster 9 with Ncrl1, Ccl5, Gzma, Nkg7
and Prfl (Fig 6B-6D) ranging from 7.83 to 7.87 log2 fold-change (S3 Table). These genes and
pathways were predominately related to NK cell recruitment, activation and effector function
[96-101]. The Sham and ODE groups were represented by cluster 9a while the CIA group had
more of cluster 9b. The CIA+ODE group had 9a and 9b clusters (Fig 3).

Differential gene expression of ex vivo sorted lung neutrophils across
treatment groups represent disease progression

To understand the relevance of myeloid-derived lung cells in RA and RA-associated lung dis-
ease, these studies sought to determine whether gene expression of sorted lung myeloid-
derived cells corresponded to disease-specific findings among treatment groups. Lung neutro-
phils were isolated by fluorescence activated cell sorting (FACS) based on traditional cell sur-
face markers as percent of CD45" cells that were Ly6C* Ly6G™&" (Fig 7A and S1 Fig). Sham
represented resident neutrophils in the lungs at baseline [102]. By NanoString analysis, upre-
gulated genes of isolated neutrophils resembled the gene expression demonstrated in scRNA-
seq data by respective treatment groups. Neutrophils isolated from lungs of CIA and CIA
+ODE groups (as compared to Sham) demonstrated increased transcript levels of genes

A B Neutrophils C
g 30 [ Sham
Sham _CIA _ ODE CIA+ODE e O cia
= » 2§ B oo
] I CIA+ODE
2ot 52 o™
Oasta i
inddi 0 58
Ifidd o m©
Angpt1 5 N a0
Rsad2 s E
Polr3n ES
Tg S
Oasl1 2
Lysg Ifit3 Ifit1 Oas2 Zbp1 Oasla
Trex1 S 5] wwrr

- Ly6C
P

Compared to Sham
R

1.

Src Ltf Ccl4 Ccel3 1rn

3

.

Compared to Sham

Normalized Fold-Change Normalized Fold-Chan
g

°

M LN oo
—Ly66—> Sigiect c2 Pf4 cfb Cxcl9  Cist

Fig 7. Treatment group-specific gene expression pattern demonstrated in isolated lung neutrophils. Neutrophils
were sorted from lung digests as live, singlets, CD45", non-lymphocytes, Ly6C" and Ly6G*. (A) Representative dot
plots of Ly6C* Ly6G* neutrophils sorted from Sham, CIA, ODE and CIA+ODE treatment groups shown. (B) Heat
map of fold-change of top 15 genes normalized to 20 housekeeping genes from each treatment group compared to
Sham. (C) Bar graphs reflect the mean of normalized fold-change with standard error bars of representative genes
from each treatment group Sham (red), CIA (green), ODE (teal), and CIA+ODE (blue). N = 3 (3 independent
experiments with 2-3 mice pooled, 8 total mice). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

https://doi.org/10.1371/journal.pone.0240707.9007
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involved in autoimmunity as well as genes associated with gMDSCs/autoreactive neutrophils.
These included (CIA and CIA+ODE): Ifit3 (21.7 and 7.49-fold), Ifit1 (17.2 and 5.9-fold), Oas2
(17.0 and 6.0-fold), Zbp1 (14.6 and 8.5-fold), Cxcl9 (5.1 and 8.5-fold), and Oasla (12.5 and
7.2-fold) (Fig 7B and 7C). Interestingly, the CIA+ODE group also showed gene expression
that paralleled that of the ODE group, including increased transcript levels of Src (CIA+ODE:
6.1-fold and ODE: 7-fold), Pf4 (7.7 and 5.3-fold), and complement cascade genes such as C2
(9.6 and 6-fold-change), and Cfb (9.2 and 2.5-fold-change) (Fig 7B and 7C). In contrast, the
ODE group demonstrated exclusive upregulation of Ltf (4.7-fold-change), Ccl4 (3.2-fold), Ccl3
(2.8-fold) and Ilirn (2.5-fold) as compared to Sham, consistent with the inflammatory neutro-
phil cluster (Fig 7B and 7C). There was a single complement cascade gene (CIsI) that was
exclusively upregulated in CIA+ODE (4.3-fold) (Fig 7C).

Macrophage and monocyte populations from CIA and CIA+ODE groups
exhibit gene profiles comparable to RA and RA-associated lung disease,
respectively

After excluding dead cells, doublets, lymphocytes and neutrophils (Ly6G™), 3 separate lung
monocyte-macrophage populations were sorted based upon CD11c and CD11b expression
(Fig 8A and S1 Fig) [17, 18]. These 3 populations are 1) CD11c™#"CD11b"*"*** macrophages,
2) CD11c™e™edi2ie D] 1b8" mono-macs and 3) CD11b™8"CD11¢™ monocytes. Of the
CD11cMeh macrophages, the expression of CD11b (evident on the pseudocolor plots; Fig 8A)
shifts to the right: CITA+ODE>ODE>CIA as compared to Sham. Increasing expression of
CD11b on CD11c+ macrophages suggest an activated phenotype [18, 103]. Infiltrating inflam-
matory monocytes and recruited monocytes/macrophages have been implicated in other
experimental lung fibrotic experimental settings [104-106]. Similar to neutrophils, the isolated
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Fig 8. Treatment group-specific gene expression pattern demonstrated in isolated macrophages. Three monocyte/
macrophage populations were sorted from lung digests as live, singlets, CD45", non-lymphocytes, Ly6C™ and Ly6G™,
and identified as separate populations with variable expression of CD11b and CD11c. RNA was isolated from these
populations and subjected to NanoString nCounter analysis. (A) Representative dot plots of the populations sorted as:
(1) macrophages (CD1 1chieh CD11bY ) (2) monocytes-macrophages (CD1 1 cintermediate oy 1 1 phishy and (3)
monocytes (CD11c", CDllbhigh) from each treatment of Sham, CIA, ODE, and CIA+ODE shown. (B) Heat map of
fold-change of top 15 genes normalized to 20 housekeeping genes from each treatment group compared to Sham. (C)
Bar graphs depict mean with standard error bars of representative genes from each treatment group Sham (red), CIA
(green), ODE (teal), and CIA+ODE (blue). N = 3 (3 independent experiments with 2-3 mice pooled), 8 total mice.
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

https://doi.org/10.1371/journal.pone.0240707.9008
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macrophage population also demonstrated increased gene expression in CIA and CIA+ODE
group that included Cigb (8.6 and 8.2-fold), Cxcl9 (10.9 and 6-fold), Clga (7.5 and 7.6-fold),
Ifi441 (3.6 and 3.2-fold), Cmklrl (2.1 and 9.3-fold), Ccl8 (3.2 and 7.6-fold), SdcI (2.3 and
7.8-fold), and Ms4a4a (3.8 and 5.3-fold). Increased expression of Gzma was unique to the CIA
group (6-fold) (Fig 8B and 8C), while CIsI was upregulated in both CIA+ODE (6.5-fold) and
ODE (3-fold) groups along with Pf4 (7.9 and 7.3-fold), Itgam (4.2 and 5.4-fold), and Pdpn (4
and 4.2-fold). Expression of Src (4.7, 5.6 and 6.4-fold) and Blnk (2.3, 5.1 and 5.9-fold) was
increased in all treatment groups (CIA, ODE and CIA+ODE) as compared to Sham (Fig 8B
and 8C).

The CD11c™™%%*CD11b* monocyte-macrophage population demonstrated increased
expression of several interferon-associated and other genes implicated in autoimmune
responses in CIA and CIA+ODE groups including Gbp2 (7.4 and 6.9-fold), Zbp1 (7 and
2-fold), Ifi44 (6.6 and 4.3-fold), Ifi44l (6 and 5.1-fold), Cxcl9 (5.8 and 8.1-fold), and Fcgrl (2.4
and 2.9-fold). ODE and CIA+ODE groups demonstrated increased expression of Cxcl5 (3.4
and 2.6-fold), Pdpn (4.2 and 3.3-fold), Pf4 (5.4 and 3.8-fold), and Cxcl13 (6.8 and 3.6-fold)
compared to Sham (Fig 9A and 9B). Cfb (5.9, 4.1, and 16.3-fold), CcI8 (11.3, 5.1, and 6.7-fold),
and Cls! (5.8, 7, and 19.3-fold) were overexpressed in CIA, ODE and CIA+ODE groups,
respectively, compared to Sham. Expression of non-canonical I-kappa-B kinase, Ikbke, associ-
ated with anti-viral responses and autoimmune diseases, was increased in the CIA+ODE
group (2.5-fold) compared to Sham (Fig 9A and 9B).

The monocyte population (CD11¢"CD11b") was unique because all the upregulated genes
including Oasl1 (15 and 4.6-fold), Oasla (15.6 and 15.3-fold), Oas2 (11.7 and 12.4-fold), Ifi44
(11.0 and 9.5-fold), Ifi44I (11.1 and 11.1-fold), SiglecI (11.1 and 6.1-fold), Gbp2 (2.9 and
5.3-fold), Gbp5 (3.8 and 4.3-fold), Statl (3.3 and 3.8-fold), and Isg15 (4.1 and 3.7-fold) were
increased in both CIA and CIA+ODE groups respectively (Fig 10A and 10B). Moreover, these
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Fig 9. Treatment group-specific gene expression pattern demonstrated is isolated monocyte-macrophage
population. Monocytes-macrophages were sorted as CD11c™e™edi%¢ cD11bMe" (A) Heat map of fold-change of top
15 genes/treatment group (CIA, ODE and CIA+ODE) normalized to 20 housekeeping genes compared to Sham. (B)
Bar graphs of mean with standard error bars of representative genes from each treatment group Sham (red), CIA
(green), ODE (teal), and CIA+ODE (blue). N = 3 (3 independent experiments with 2-3 mice pooled, 8 total mice).
***P<0.001, ****P<0.0001.

https://doi.org/10.1371/journal.pone.0240707.9009
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Fig 10. Treatment group-specific gene expression pattern. Demonstrated in isolated monocytes. Monocytes were
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+ODE) normalized to 20 housekeeping genes compared to Sham. (B) Bar graphs depict mean with standard error bars
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(3 independent experiments with 2-3 mice pooled, 8 total mice). *P<0.05, ****P<0.0001.

https://doi.org/10.1371/journal.pone.0240707.9010

genes are mostly associated with autoimmunity or immunosuppression [32, 57]. The ODE
group exhibited higher transcript levels of Ccl8 (7.5-fold), Pdpn (6.4-fold), Ferls (4.9-fold) and
Src (4.7-fold), consistent with the other sorted neutrophil and monocytes/macrophages popu-
lations. While Cfb expression was increased in all 3 treatment groups, Dnmt3a was upregulated
(2.3 and 3.4-fold) in ODE and CIA+ODE groups, respectively (Fig 10A and 10B), but not in
CIA.

Finally, gMDSCs were identified as Ly6C*Ly6G™"CD11b"8"SSCM€" (S Fig) [107, 108] on
posthoc gating of sorted neutrophil populations resulting in non-significant variations across
the treatment groups (Fig 11A). In contrast, nMDSC defined as Ly6G~ CD11b* Ly6C""
SSC' cells (S2 Fig) [107, 108] were increased with CIA but decreased with ODE and CIA
+ODE (Fig 11B).

Discussion

In this study, scRNA-seq analysis was applied to whole lung immune cells from a mouse
model of RA-associated inflammatory lung disease with key findings confirmed in sorted lung
cell populations and NanoString analysis. Building upon the preclinical model of RA-associ-
ated inflammatory lung disease [11], we report a number of key findings in this study includ-
ing: (a) identification of 3 unique neutrophil populations including inflammatory, transient
and immunosuppressive/autoreactive granulocytes among experimental groups, (b) heteroge-
neity among 5 macrophage populations including metabolically active, proliferative, differenti-
ating, recruited, and residential with classical (M1) and alternatively (M2)-activated genes, (c)
identification of 2 stages of T-lymphocytes (differentiating and effector), a B-cell population
and a NK cell cluster, (d) variability in the distribution of cellular clusters among the treatment
groups representing RA and RA-associated lung disease (CIA and CIA+ODE groups, respec-
tively), (e) identification of gMDSC and mMDSC populations based on cell surface markers,
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Ratio of CD11b+ gMDSCs
Ratio of Ly6C+ mMDSCs
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Fig 11. Differences in myeloid-derived suppressor cells (MDSCs) identified in posthoc analysis among treatment
groups. (A) Dot plots show differences in CD45* Ly6C* Ly6G" CD11b* SSC™¢" granulocytic (g) MDSCs among
treatment groups. (B) Bar graph depicts mean with standard error bars of the ratio change in gMDSCs as normalized
to Sham (percentile of gMDSC treatment group divided by percentile of gMDSC Sham group). (C) Dot plots show
differences in CD45" Ly6G~ CD11b* Ly6C* SSC'®" monocytic (m) MDSCs among treatment groups. (D) Bar graph
depicts mean with standard error bars of the ratio change in mMDSCs as normalized to Sham (percentile of mMDSC
treatment group divided by percentile of mMDSC Sham group). N = 3 (3 independent experiments with 2-3 mice
pooled; 8 total mice). *P<0.05, **P<0.01, ****P<0.0001.

https://doi.org/10.1371/journal.pone.0240707.g011

and (f) identification of unique genes (interferon-related/autoimmune and complement cas-
cade) that are found in a mouse model of RA-associated inflammatory lung disease.
Occupational exposures from farming, construction, mechanics, medical and military
waste have been associated with increased risk of development of RA and/or RA-associated
lung disease [109-113]. However, precise mechanism(s) of the development of RA-associated
lung disease with occupational and/or environmental inflammatory exposures is not known.
Working towards identifying these mechanisms, previous studies demonstrated that repeated
exposure to microbial-enriched ODE and particularly ODE+CIA increases citrullination and
malondialdehyde-acetaldehyde (MAA)-adduction of lung proteins with a corresponding
increase in circulating autoantibody concentrations, periarticular bone damage, and increased
deposition of extracellular matrix proteins with a reduction in classical airway inflammatory
markers [11, 114]. These findings suggested a transition of inflammatory lung disease towards
a pro-fibrotic phenotype. Leveraging this co-exposure mouse model with CIA and ODE, sev-
eral immune cell populations exhibiting unique gene expression signatures that were differen-
tially distributed across treatment groups were demonstrated that suggest potential roles in the
pathogenesis of RA, inflammatory lung disease, and inflammatory lung disease specific to RA.
Neutrophils have been classically related to inflammation and host response to pathogens
[115]. Knowledge of their role in inflammation and homeostasis continues to evolve as various
subsets of neutrophils have been identified and proposed based upon steady state, inflamma-
tory, or anti-inflammatory programming [116]. Many intermediate phenotypes have also been
defined, further complicating classifications and the proposed roles in both disease and
homeostasis [117]. The 3 different neutrophil populations currently identified aptly signify an
inflammatory (in ODE), anti-inflammatory (or autoreactive) (in CIA and CIA+ODE) and
homeostatic (transient) (in Sham). In the cell sorting/NanoString studies, neutrophils were

PLOS ONE | https://doi.org/10.1371/journal.pone.0240707 February 12, 2021 16/27



PLOS ONE

RNA sequencing identifies unique cell populations in RA-related lung disease

identified and limited to Ly6C* Ly6G" cells based upon equipment limitations of simultaneous
4-cell capture ability. Future studies to include the Ly6G" Ly6C cells that were predominately
observed with ODE and CIA+ODE could also be informative. Further studies are needed to
delineate precisely how these sub-populations program the lung immune response towards
inflammatory and pro-fibrotic disease states.

MDSCs have been implicated in RA [118] as well as ILD [119]. However, their relationship
to the RA-associated lung disease is not well-established. MDSCs are transient populations
representing myeloid cells at various stages of differentiation that suppress immunity and are
subdivided into granulocytic (g) or monocytic (m) origin [120-122]. MDSCs are identified by
their high expression of Nox2, calprotectin (S100a8/$100a9), Mmp8, Mmp9, Cd33, and multi-
ple interferon-inducible genes such as Ifit3, Ifitl, Oas2, Zbp1, Ifi44, Ifi44] and Oasla [123, 124].
By scRNA-seq analysis, resolution of gMDSC was high with population segregation in cluster
3, which was driven by systemic arthritis induction (i.e. CIA and CIA+ODE groups). This
finding was further strengthened by the RNA analysis of the sorted Ly6G* Ly6C" neutrophil
population of corresponding treatment groups. Posthoc analysis confirmed that the sorted
group contained gMDSCs with Ly6G* Ly6C* CD11b™&" SSC™e" gating [107, 108], but there
was no difference across treatment groups. Unsupervised clustering of immune cells did not
segregate mMDSCs. However, gene expression of sorted monocyte-macrophage populations
based on CD11b and CD11c expression suggested the presence of mMDSC-like properties
based upon the immunosuppressive genes that were elevated in CIA and CIA+ODE groups.
Using a classical gating strategy (Ly6G~ CD11b* Ly6C"€" SSC'*™) for mMDSCs [108],
mMDSCs were identified with FACS and found to be decreased in combination (CIA+ODE)
exposure group. These findings are consistent with a recent report that showed that the expan-
sion of MDSCs following tofacitinib treatment is inversely related to the progression of ILD in
the SKG mouse model of RA-ILD [125]. These collective findings would suggest a potential
protective role for lung MDSCs (particularly mMDSCs) in the development RA-related lung
disease, and future studies are warranted to understand their role in disease manifestations to
potentially develop novel targets for therapeutic interventions.

Macrophages are one of the most versatile immune cells with immense population hetero-
geneity and diverse functions [126, 127]. Macrophages are increasingly appreciated for their
role in fibrosis, wound repair and resolution [47, 68, 128]. In this current study, the metaboli-
cally active airspace macrophages, resident, recruited and differentiating macrophages (clus-
ters 1, 11, 5 and 2, respectively) contribute to inflammation and resolution, while the
proliferative airspace macrophages (cluster 14) signify self-renewing properties to maintain a
steady population in the lungs. These studies potentially open avenues for hypothesis genera-
tion based on various non-traditional genes (interferon-related/autoimmune and complement
cascade) expressed in the macrophage subsets that have not been previously investigated in
health and disease. The unique distribution of various macrophage clusters among the treat-
ment groups, particularly clusters 1b, 1c, 5 and 11 in ODE group, and clusters 1a, 2a and 12b
(inflammatory monocytes) in CIA and CIA+ODE groups signify their importance in disease
transition from RA to RA-associated lung disease. Correspondingly, infiltrative CCR2" inflam-
matory monocytes were demonstrated with CIA and ODE with highest expression in com-
bined exposures. Future studies could determine whether targeting this cell population results
in a reduction of disease manifestations.

Subtle differences among lymphocyte populations (clusters 6, 7, 9 and 13) support earlier
work demonstrating that B lymphocytes are skewed towards an autoreactive response follow-
ing airborne biohazard exposure [114]. B lymphocytes have been recognized as one of the
major drivers of autoimmunity [129] and are the target of highly effective RA therapies such as
rituximab [130]. Colocalization of MAA with autoreactive B lymphocytes in lung tissues of
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RA-ILD patients [131] further signifies their potential role in the pathogenesis of RA-ILD.
While NK cells are considered a bridge between innate and adaptive immune responses [132],
targeting cluster 9b could be of interest. Similarly, autoreactive T lymphocytes (perhaps cluster
6b) and cellular phenotypes supporting fibroproliferation with increase in activated fibroblasts
with extracellular matrix deposition could be of particular interest in RA-ILD.

In addition to confirming the upregulation of several interferon-induced genes implicated
in autoimmunity, complement cascade genes such as Clra, Clqa, Clgb, C2, and Cfb represent-
ing classical and alternative pathways [133] were identified. C1sI was highlighted among the
complement cascade genes due to its high expression, and was invariably upregulated in the
CIA+ODE group in all 4 cell-sorted neutrophil and monocyte-macrophage populations. CI
acts as a sensor for self and non-self-recognition and thus plays a major role in self-tolerance
[134]. Complement cascade genes are recognized in RA [135] and ILD [136-138], but remain
overlooked as therapeutic targets [139]. Holers et. al. [135] suggested that RA-ILD has a com-
plement connection, but to our knowledge, this is among the first reports to experimentally
identify ClIs1 or complement cascade genes in a RA-inflammatory lung disease model.

There are limitations of this study. In general, animal modeling of arthritis-lung disease
interactions are overall limited. The over-expressing TNF-alpha transgenic mice that develop
an array of connective tissue diseases has been associated with interstitial lung disease and pul-
monary hypertension, particularly in female mice [22]. The arthritic SKG mice develop a cellu-
lar and fibrotic interstitial pneumonia [140], but SKG mice do not develop compelling
evidence of autoimmunity or arthritis following inhalation injury (i.e tobacco smoke or bleo-
mycin) [140]. Our model system utilizing complex agriculture dust exposure-induced airway
inflammation in the setting of CIA would be representative of populations whereby inhalant
airborne toxicants are recognized risk factors for RA and RA-lung disease. Cigarette smoke
exposure is the most-well-environmental established risk for RA, and occupational inhalant
exposures (e.g. work exposures in farming, construction, mining, warehouse environments)
have been increasingly associated with risk of disease development, particularly among men
[112, 141, 142]. Moreover, it has previously been reported that ODE exposure induced citrulli-
nated and malondialdehyde-acetaldehyde (MAA) modified proteins in the lung tissue [114],
antigens that have been implicated in RA pathogenesis. The advantage of this modeling system
is that disease development is dependent on airborne biohazard exposures and can be readily
modified to investigate other types of exposures. These current studies were focused on male
mice because previous work demonstrated that male mice were profoundly more susceptible
to CIA+ODE induced adverse effects as compared to female mice [11]. Moreover, it is also rec-
ognized that non-arthritic male mice are susceptible to inhalant endotoxin-induced bone loss
whereas female mice were protected and that this protection was dependent upon estrogen
[143]. Future studies may be warranted to investigate how single airborne biohazard exposures
(e.g. endotoxin, pollutants) in the setting of arthritis induction affect lung-arthritis disease as
well as specific hormone factors including testosterone, progesterone, and estrogen. Although
lung DCs were noted to be limited in this mouse modeling system, future studies could also
investigate the role of lung DCs in lung inflammatory disorders associated with RA.

In conclusion, application of scRNA-seq to an animal model combining systemic arthritis
induction and environmental inhalant-induced lung inflammation (i.e. RA-associated lung
disease) identified unique populations of lung immune cell clusters differentially ascribed to
individual treatment conditions. Neutrophil subpopulations and heterogeneous macrophage-
monocyte populations were identified in addition to unique genes (interferon-related and
complement cascade) that could be contributing to the pathogenesis of RA-associated lung
disease. Additionally, this information might inform potential candidates that could be
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exploited in future investigations examining targeted interventions and the identification of
informative disease biomarkers.

Supporting information

S1 Fig. Gating strategy for FACS-based population isolation. Neutrophils were sorted from
lung digests as live, singlets, CD45", non-lymphocytes, Ly6C" and Ly6G". Three monocyte/
macrophage populations were sorted from lung digests as live, singlets, CD45", non-lympho-
cytes, Ly6C and Ly6G~, and identified as separate populations with variable expression of
CD11b and CD11c as: (1) macrophages (CD1 1chish CD11bY bl (2) monocytes-macro-
phages (CD1 [cntermediate o1y 1HPi8R) and (3) monocytes (CD11c™, CD1 1bPishy,

(TIF)

S2 Fig. Gating strategy for posthoc analysis of myeloid-derived suppressor cells (MDSCs).
Granulocytic (g) MDSCs were identified as live, singlets, CD45", non-lymphocytes that were
Ly6C* Ly6G* CD11b* SSC™&", Whereas monocytic (m) MDSCs were identified as live, sin-
glets, CD45", non-lymphocytes that were Ly6G~ CD11b" Ly6C* SSC'°¥.

(TIF)

S1 Table. The top 10 genes uniquely identified to neutrophil subtypes with mean UMI
count, log2 fold-change and adjusted p value as compared to all other CD45+ lung cell
clusters.

(PDF)

$2 Table. The top 10 genes uniquely identified to monocyte, macrophage and DC subtypes
with average UMI count, log2 fold-change and adjusted p value compared to all other
CD45+ lung cell clusters.

(PDF)

S3 Table. The top 10 genes uniquely identified to lymphocytes subtypes with average UMI
count, log2 fold-change and adjusted p value compared to all other CD45+ lung cell clus-
ters.

(PDF)
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