111 research outputs found

    Study of the pyrolysis mechanism of SiBCN polymer precursor

    Get PDF
    The pyrolysis mechanisms occurring during the conversion of polyborosilazane (PBSZ) into amorphous SiBCN cerasmic have been investigated. TGAā€“TDG experiment have been applied to investigate the mass loss behaviour during ceramization. Solid-state 11B, 13C and 29Si NMR spectroscopy has been applied to probe the local environment of all NMR active nuclei in the precursor, the thermolysis intermediates and the ceramic residue. IR spectroscopy has been performed to receive valuable information on the chemical bonding in all materials. At temperature below 400oC, Si-N bonds are formed via condensation reaction involving N-H and Si-H units with hydrogen released. It is followed by evolution of hydrocarbons due to the cleavage of bonds and formation of methane and hydrogen at 600 oC. After heating to 1000 oC, ceramization complete and free carbon, BN3 domains as well as Siā€“Cā€“N units coexist SiCxN4-x,x=0,1,2,3. And BN3 keep unchanged during the whole ceramization stage

    Security and Energy-aware Collaborative Task Offloading in D2D communication

    Get PDF
    Device-to-device (D2D) communication technique is used to establish direct links among mobile devices (MDs) to reduce communication delay and increase network capacity over the underlying wireless networks. Existing D2D schemes for task offloading focus on system throughput, energy consumption, and delay without considering data security. This paper proposes a Security and Energy-aware Collaborative Task Offloading for D2D communication (Sec2D). Specifically, we first build a novel security model, in terms of the number of CPU cores, CPU frequency, and data size, for measuring the security workload on heterogeneous MDs. Then, we formulate the collaborative task offloading problem that minimizes the time-average delay and energy consumption of MDs while ensuring data security. In order to meet this goal, the Lyapunov optimization framework is applied to implement online decision-making. Two solutions, greedy approach and optimal approach, with different time complexities, are proposed to deal with the generated mixed-integer linear programming (MILP) problem. The theoretical proofs demonstrate that Sec2D follows a [O(1āˆ•V),O(V)] energy-delay tradeoff. Simulation results show that Sec2D can guarantee both data security and system stability in the collaborative D2D communication environment

    Real-time and dynamic fault-tolerant scheduling for scientific workflows in clouds

    Get PDF
    Cloud computing has become a popular technology for executing scientific workflows. However, with a large number of hosts and virtual machines (VMs) being deployed, the cloud resource failures, such as the permanent failure of hosts (HPF), the transient failure of hosts (HTF), and the transient failure of VMs (VMTF), bring the service reliability problem. Therefore, fault tolerance for time-consuming scientific workflows is highly essential in the cloud. However, existing fault-tolerant (FT) approaches consider only one or two above failure types and easily neglect the others, especially for the HTF. This paper proposes a Real-time and dynamic Fault-tolerant Scheduling (ReadyFS) algorithm for scientific workflow execution in a cloud, which guarantees deadline constraints and improves resource utilization even in the presence of any resource failure. Specifically, we first introduce two FT mechanisms, i.e., the replication with delay execution (RDE) and the checkpointing with delay execution (CDE), to cope with HPF and VMTF, simultaneously. Additionally, the rescheduling (ReSC) is devised to tackle the HTF that affects the resource availability of the entire cloud datacenter. Then, the resource adjustment (RA) strategy, including the resource scaling-up (RS-Up) and the resource scaling-down (RS-Down), is used to adjust resource demands and improve resource utilization dynamically. Finally, the ReadyFS algorithm is presented to schedule real-time scientific workflows by combining all the above FT mechanisms with RA strategy. We conduct the performance evaluation with real-world scientific workflows and compare ReadyFS with five vertical comparison algorithms and three horizontal comparison algorithms. Simulation results confirm that ReadyFS is indeed able to guarantee the fault tolerance of scientific workflow execution and improve cloud resource utilization

    OLLIE: Derivation-based Tensor Program Optimizer

    Full text link
    Boosting the runtime performance of deep neural networks (DNNs) is critical due to their wide adoption in real-world tasks. Existing approaches to optimizing the tensor algebra expression of a DNN only consider expressions representable by a fixed set of predefined operators, missing possible optimization opportunities between general expressions. We propose OLLIE, the first derivation-based tensor program optimizer. OLLIE optimizes tensor programs by leveraging transformations between general tensor algebra expressions, enabling a significantly larger expression search space that includes those supported by prior work as special cases. OLLIE uses a hybrid derivation-based optimizer that effectively combines explorative and guided derivations to quickly discover highly optimized expressions. Evaluation on seven DNNs shows that OLLIE can outperform existing optimizers by up to 2.73Ɨ\times (1.46Ɨ\times on average) on an A100 GPU and up to 2.68Ɨ\times (1.51Ɨ\times) on a V100 GPU, respectively

    Characterization of 35 novel microsatellite DNA markers from the duck (Anas platyrhynchos) genome and cross-amplification in other birds

    Get PDF
    In order to study duck microsatellites, we constructed a library enriched for (CA)n, (CAG)n, (GCC)n and (TTTC)n. A total of 35 pairs of primers from these microsatellites were developed and used to detect polymorphisms in 31 unrelated Peking ducks. Twenty-eight loci were polymorphic and seven loci were monomorphic. A total of 117 alleles were observed from these polymorphic microsatellite markers, which ranged from 2 to 14 with an average of 4.18 per locus. The frequencies of the 117 alleles ranged from 0.02 to 0.98. The highest heterozygosity (0.97) was observed at the CAUD019 microsatellite locus and the lowest heterozygosity (0.04) at the CAUD008 locus, and 11 loci had heterozygosities greater than 0.50 (46.43%). The polymorphism information content (PIC) of 28 loci ranged from 0.04 to 0.88 with an average of 0.42. All the above markers were used to screen the polymorphism in other bird species. Two markers produced specific monomorphic products with the chicken DNA. Fourteen markers generated specific fragments with the goose DNA: 5 were polymorphic and 9 were monomorphic. But no specific product was detected with the peacock DNA. Based on sequence comparisons of the flanking sequence and repeat, we conclude that 2 chicken loci and 14 goose loci were true homologous loci of the duck loci. The microsatellite markers identified and characterized in the present study will contribute to the genetic map, quantitative traits mapping, and phylogenetic analysis in the duck and goose

    Modeling seismic wave propagation in the Loess Plateau using a viscoacoustic wave equation with explicitly expressed quality factor

    Get PDF
    The thick Quaternary loess on the Loess Plateau of China produces strong seismic attenuation, resulting in weak reflections from subsurface exploration targets. Accurately simulating seismic wavefield in the Loess Plateau is important for guiding subsequent data processing and interpretation. We present a 2D/3D wavefield simulation method for the Loess Plateau using a viscoacoustic wave equation with explicitly expressed quality factor. To take into account the effect of irregular surface, we utilize a vertically deformed grid to represent the topography, and solve the viscoacoustic wave equation in a regular computational domain that conforms to topographic surface. Grid deformation introduces the partial derivatives such as āˆ‚vx/āˆ‚z and āˆ‚vy/āˆ‚z in the wave equation, which is difficult to be accurately computed using traditional staggered-grid finite-difference method. To mitigate this issue, a finite-difference scheme based on a fully staggered-grid is adopted to solve the viscoacoustic wave equation. Numerical experiments for a simple layer model and 2D/3D realistic Loess Plateau models demonstrate the feasibility and adaptability of the proposed method. The 3D modeling results show comparable amplitude and waveform characteristics to the field data acquired from the Chinese Loess Plateau, suggesting a good performance of the proposed modeling method
    • ā€¦
    corecore