
Energy‑aware task offloading with deadline
constraint in mobile edge computing
Zhongjin Li1, Victor Chang2*  , Jidong Ge3, Linxuan Pan3, Haiyang Hu1 and Binbin Huang1 

1  Introduction
Many mobile applications are emerging with the development of a wireless network for
mobile users, which are computation-intensive and time-sensitive, such as traffic moni-
toring, smart homes, real-time video analysis, and object tracking. Recently, mobile
devices (MDs) from Apple, Samsung, and Huawei companies have more powerful com-
putation capability [1]. For example, the up-to-date Apple iPhone 12 is equipped with a
neural network engine and multi-core CPUs, which can process various computation-
intensive mobile applications. Unfortunately, due to the constraint of the physical size of
MDs, the computation resource and battery capacity are still limited. That is, running all

Abstract 

With the development of the wireless network, increasing mobile applications are
emerging and receiving great popularity. These applications cover a wide area, such
as traffic monitoring, smart homes, real-time vision processing, objective tracking, and
so on, and typically require computation-intensive resources to achieve a high quality
of experience. Although the performance of mobile devices (MDs) has been continu-
ously enhanced, running all the applications on a single MD still causes high energy
consumption and latency. Fortunately, mobile edge computing (MEC) allows MDs
to offload their computation-intensive tasks to proximal eNodeBs (eNBs) to augment
computational capabilities. However, the current task offloading schemes mainly
concentrate on average-based performance metrics, failing to meet the deadline
constraint of the tasks. Based on the deep reinforcement learning (DRL) approach,
this paper proposes an Energy-aware Task Offloading with Deadline constraint (DRL-
E2D) algorithm for a multi-eNB MEC environment, which is to maximize the reward
under the deadline constraint of the tasks. In terms of the actor-critic framework, we
integrate the action representation into DRL-E2D to handle the large discrete action
space problem, i.e., using the low-complexity k-nearest neighbor as an approximate
approach to extract optimal discrete actions from the continuous action space. The
extensive experimental results show that DRL-E2D achieves better performance than
the comparison algorithms on all parameter settings, indicating that DRL-E2D is robust
to the state changes in the MEC environment.

Keywords:  Mobile edge computing, Task offloading, Energy and deadline-aware,
Deep reinforcement learning (DRL), Actor-critic framework, K-nearest neighbor (K-NN)

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/.

RESEARCH

Li et al. J Wireless Com Network (2021) 2021:56
https://doi.org/10.1186/s13638-021-01941-3

*Correspondence:
V.Chang@tees.ac.uk
2 School of Computing
and Digital Technologies,
Teesside University,
Middlesbrough, UK
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-8012-5852
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-01941-3&domain=pdf

Page 2 of 24Li et al. J Wireless Com Network (2021) 2021:56

the mobile applications on a single MD may cost comparatively battery capacity, i.e., the
energy consumption of MD’s battery.

One of the solutions to reduce energy consumption is to migrate tasks to the cloud
computing platform by a wireless network, which is the concept of mobile cloud com-
puting (MCC) [2]. In MCC, a MD can exploit the powerful distant centralized cloud
computing resources but introducing a long transmission time that cannot meet the
demand of delay-sensitive mobile applications.

With the development of 5G techniques, more and more eNodeBs (eNBs) will be
deployed in a smart city. These eNBs form the service provisioning of computing, stor-
age, and network for mobile users, contributing to the concept of mobile edge comput-
ing (MEC). MEC pushes the resources to the edge node, called eNB, and consolidates
the functions of the base station and physical servers [3–5]. Thus, MDs can access the
network, storage, and computation resources from the proximal eNBs. However, a tech-
nique report from Cisco predicts that by 2021, about 11.6 billion MDs will utilize the
wireless network worldwide [6]. Therefore, deploying high-dense eNBs is required to
cope with a large number of MDs presenting simultaneously [7, 8]. Thus, in the MEC
environment, each MD can offload its computation-intensive and latency-critical tasks
to multiple proximal eNBs. However, improper task offloading schemes result in more
energy consumption and higher latency.

Task or computation offloading in the MEC environment has already been exten-
sively studied. Traditional offloading schemes are model-based, i.e., usually assume that
the mobile signal between MD and eNB is well modeled [7, 9–11]. However, the MEC
environment is very complicated, and the users’ mobilities are highly dynamic, making
the mobile models hard to construct and predict. Hence, a novel model-free approach
should be developed to control well the mobile network, instead of an accurate math-
ematical model.

In 2015, Mnih et al. [12] integrated the mechanism of reinforcement learning into deep
learning, yielding the concept of deep reinforcement learning (DRL), which has been
successfully applied in playing Atari games by making use of deep Q-network (DQN).
Then, in 2016, Google’s DeepMind team developed a famous DRL application, AlphaGo
program, defeating the most professional Go players [13]. Hence, DRL has made a
breakthrough in model-free learning. It has recently become a promising approach to
implement task offloading in MEC and works well in practice [14–19].

The benefits of using the DRL method to implement task offloading in MEC are three-
fold: (1) DRL is a model-free optimization method, i.e., it does not need any model-
based mathematical knowledge; (2) it can tackle the optimization problem in a highly
dynamic time-varying system; and (3) it can handle the large state and action space
problems (such as Atari games [12]). The above features indicate that DRL is the ideal
way to implement task offloading in MEC.

However, applying the DRL technique for MEC task offloading should consider and
solve the following problems. First, our proposed task offloading problem in MEC with
high-dense eNBs is a large discrete action space problem. For instance, with five eNBs
in MEC for an MD to offload 20 tasks, there exist more than 50 thousand offloading
actions. In this case, DQN based DRL cannot work well, as it only has the potential to
cope with the small action space problem. Second, task offloading is a discrete control

Page 3 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

problem, and hence, the continuous control methods, such as deep deterministic policy
gradient (DDPG) [20], cannot work.

This paper proposes a DRL-based model-free task offloading algorithm, called DRL-
E2D, with a large discrete action space for the multi-eNB MEC environment. In such an
environment, an MD can offload its tasks to multiple eNBs with the deadline constraint
of the tasks. The aim of DRL-E2D is to optimize the long-term MD’s energy consump-
tion by jointly learning the neural network from the unknown environment and making
optimal decisions under the current system state. We summarize our contributions as
below:

•	 In contrast with the model-based method, we study the energy-aware task offloading
problem with the deadline constraint and propose a novel model-free DRL task off-
loading algorithm, called (DRL-E2D) a multi-eNB MEC environment.

•	 DRL-E2D deals with the task offloading problem by maximizing the well-designed
reward, which is the weighted sum of the utility of processed tasks, energy consump-
tion, and the penalty of task dropping. Thus, in each time slot, according to the sys-
tem status, it makes the optimal actions on how many tasks should be processed by
MD and how many tasks should be offloaded to eNBs.

•	 As discussed above, the task offloading in a multi-eNB environment is a large dis-
crete action space problem. We first adopt an actor-critic framework to implement
the learning process, and then, k-nearest neighbor (K-NN)-based action representa-
tion is used to extract optimal and discrete action from the continuous action space.

•	 By the extensive simulation, we first find that the K-NN approach indeed makes the
DRL-E2D converge to a better reward. Compared with load balancing, remote exe-
cution, local execution, and DQN, DRL-E2D outperforms these baseline algorithms
on the ultimate reward.

This paper is organized as follows: In Sect. 2, we summarize the existing work about
task or computation offloading in MEC. In Sect. 3, we introduce our devised system
architecture, present the task’s parameter computation, and formulate the optimization
problem. In Sect. 4, we elaborate on the methods and experimental design, including the
preliminary of the DRL, DRL-E2D algorithm, and experimental simulation. In Sect. 5,
we present and discuss the experiment results. Finally, in Sect. 6, we conclude this paper
and propose future research directions.

2 � Related work
There have been many existing studies on task or computation offloading in MEC. This
section classifies the corresponding algorithms as general approaches and DRL-based
approaches for task offloading.

2.1 � General approaches for task offloading

The general approaches summarized in this paper mean using model-based optimiza-
tion methods (such as game theory, queuing theory, Lyapunov, and so on) to implement
task or computation offloading. For example, Chen et al. [11] put forward the multi-user
offloading problem in mobile-edge cloud computing and achieve efficient offloading

Page 4 of 24Li et al. J Wireless Com Network (2021) 2021:56

by leveraging the game theory. Beraldi et al. [21] consider a cooperative computation
offloading problem between two eNBs. This problem is formulated as an M/M/2-2K
queuing model and applies the trade-off policy to reduce data exchange while minimiz-
ing system congestion. However, this cooperative scheme cannot be used for our task
offloading problem, but it may be extended to the D2D communication environment.
Moreover, the above two works need to rely on an accurate mathematical model to
implement task offloading.

Wang et al. [22] develop a framework of combing computation offloading with inter-
ference management, where graph coloring is used for the MEC server to make the off-
loading decision in terms of local computation overhead and offloading overhead. To
address the conflict between MEC and Cloud radio access network (C-RAN), Li et al.
[10] investigate the control decision of task offloading in C-RANs environments. A
multi-phase heuristic method is introduced through the Gale-Shapley Matching Theory
to minimize the rejection rate of offloading requests. However, the above two offloading
methods are applied for MEC servers instead of MD. Dinh et al. [8] propose a compu-
tational offloading framework to minimize the joint cost of energy and delay and devise
two approximate approaches to solve the generated mixed-integer linear programming
(MILP) problem. Chen et al. [7] investigate task offloading problems in ultra-dense eNBs
environment to minimize the delay and energy consumption and employ KKT condition
and iterative algorithm to implement resource allocation and task placement, respec-
tively. However, they mainly focus on deriving a one-shot offloading strategy that is not
appropriate for long-term performance optimization.

Miao et al. [23] propose a prediction-based computation offloading and task migration
algorithm to reduce the processing delay of users’ applications. However, it is impos-
sible to predict future values accurately, especially in such a dynamic and random MEC
environment. Yan et al. [24] research the joint task offloading and resource allocation
problem by considering both the energy consumption and execution time. In order to
tackle this problem, an effective bisection search policy is used to compute optimal solu-
tions. However, it considers offloading the tasks with dependency relations and cannot
be used for independent tasks directly. To reduce the pressure on UAV-aided MEC serv-
ers, Wang et al. [25] propose an agent-enabled task offloading framework to perform
the optimum offloading. However, it is difficult and unrealistic to obtain environmental
information to model an agent in a dynamic and ultra-dense MEC environment.

Lyapunov optimization framework has been extensively applied in MEC task offload-
ing. Liu et al. [26, 27] study the power-delay trade-off problem with multi-user task
offloading situation, and Lyapunov stochastic optimization is used to solve this optimi-
zation problem under the constraint of delay and reliability. Lyu et al. [28] propose an
asymptotically optimal offloading schedule under partial network knowledge based on
the perturbed Lyapunov function to maximize the network utility. Sun et al. [29] develop
energy-aware mobility management (EMM), aiming to utilize Lyapunov and multi-
armed bandit theories to minimize the total delay of communication, computation, and
handover. Li et al. [30] investigate the multi-user offloading problem in WP-MEC and
propose a Lyapunov-based online computation rate maximization (OCRM) algorithm to
achieve optimal bandwidth allocation and minimum energy consumption of data trans-
mission. Lyapunov optimization-based approaches are suited for solving the problem

Page 5 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

with long-term performance optimization. However, each performance in objective
function must be the time-average metric, e.g., average energy or power, average delay,
and average cost. So, it cannot be applied in the optimization problem with determinis-
tic constraints, such as the deadline constraint of each task.

2.2 � DRL‑based approaches for task offloading

DRL-based task offloading has also been considered in many works. Li et al. [15]
research the service provision of task offloading in the UAV-based MEC environment,
which is modeled as a semi-Markov decision process, and then is solved by the DRL
method to maximize the system throughput. However, the size of the action space is
the number of perceptual access points, which can only solve the problem with a small
action space. Huang et al. [31] propose a DRL-based online offloading (DROO) frame-
work for offloading users’ tasks and allocating eNBs’ network resources. The DROO only
considers a binary offloading policy, i.e., a task can be executed locally or offloaded to
the eNB. Hence, it cannot be applied in the multi-eNB MEC environment. Lei et al. [32]
study the joint optimization problem of computation offloading and resource schedul-
ing by using the DRL technique to optimize the long-term average performance of delay
and energy consumption. However, the solved task offloading and rescheduling problem
only considers the small action space with three offloading actions and N + 1 scheduling
actions.

The DQN-based optimization method can achieve significant performance in high-
dimensional state space problems, which has also been extensively applied in MEC task
offloading. For example, Le et al. [16] propose a DQN-based optimal offloading policy to
minimize the overall performance of energy, delay, payment, and task loss in the ad-hoc
mobile cloud. However, the task delay is the sum of average values of the waiting time,
communication time, and processing time. This kind of average delay cannot be applied
to time-critical mobile applications. Li et al. [17] consider the multi-user optimization
problem of computation offloading and resource allocation and employ a DQN-based
optimization algorithm to minimize the sum of delay and energy consumption. How-
ever, in this multi-user offloading case, each mobile user only processes one task at every
time slot. Hence, it only needs to consider two actions, i.e., local computing or offload-
ing computing, which is only applicable to small action space problems. In [18], a deep
Q-learning-based autonomic offloading framework is introduced to mitigate the ser-
vice delay by making the optimal decisions according to current resource requirement,
resource state, and network state. However, the autonomic offloading framework consid-
ers an MD can offload tasks to three different MEC sites, and hence only ten actions that
the agent can take. Lu et al. [19] propose a DRL-based lightweight task offloading strat-
egy for large-scale heterogeneous MEC, which integrates the LSTM network into DQN
to improve the learning performance. However, the reward function is defined as the
weighted sum of energy consumption, cost, and load balancing of all devices, neglect-
ing the time performance, which is very critical for mobile task execution. To guarantee
data security, Huang et al. [33] propose a security and cost-aware computation offload-
ing (SCACO) strategy. The offloading problem is formulated as an MDP problem, and
a DQN-based optimal offloading policy is devised to minimize the joint cost under the
risk constraint. Similar to [16], SCACO takes the average delay, which is the average

Page 6 of 24Li et al. J Wireless Com Network (2021) 2021:56

value of execution time, processing time, and security time, into account, not the dead-
line constraint.

DQN-based algorithms work well for the optimal problem with small action space,
but not for the large discrete action space problem [34]. However, all the studies men-
tioned above take the task processing time as the average performance demand. That is
not quite reasonable for mobile applications, which take the time as the most concern.
This paper also considers the task execution time with deadline constraints.

3 � System architecture, model, and problem formulation
This section first presents the system architecture of task offloading in the MEC environ-
ment. Then, the task execution model is introduced. Finally, we give the problem formu-
lation. The basic notations used in this paper are given in Table 1.

3.1 � System architecture

Figure 1 shows the architecture of task offloading for multi-eNB MEC environment,
which consists of single MD and n eNBs denoted as a set N = {1, 2, . . . , n} . The sys-
tem time is divided into slots of equal duration; thus,τ ∈ {0, 1, 2, . . . } . At the beginning
of each time slot τ , MD generates mobile applications, such as real-time video process-
ing, smart home applications, and some artificial intelligence (AI) applications. The
number of tasks arriving at MD is represented by z(τ) ∈ Z = {0, 1, . . . , zmax} . The task
arrival process {z(τ)} is assumed to be an independent and identically distributed (i.i.d.)
sequence with E{z(τ)} = � . We assume that each arrived task has a constant data size D
and execution workload W .

In our task offloading scenario, each task can be arbitrarily offloaded to an eNB by a
wireless network or processed locally. Let ηi(τ) denote the data transmission rate (i.e.,
signal strength) from MD to eNBi in time slot τ , which is calculated by [7, 8, 29]

Table 1  Notations

Name Description

n The number of eNBs in the MEC environment

Tslot The duration of each time slot

W The task workload

D The data size of the task

� The task arrival rate at MD

TDL The task’s deadline constraint

z(τ) The number of arrived tasks at MD at time slot τ

ηi(τ) The data transmission rate from MD to eNBi in time slot τ

αi(τ) The number of tasks offloaded to eNBi in time slot τ

βi(τ) The number of tasks processed in time slot τ

ci(τ) The computation capacity of MD or eNBi

T
tx
i
(τ) The data transmission time of offloading task from MD to eNBi

T
ex
i
(τ) The execution time of a task on MD or eNBi

E(τ) The total energy consumption of MD at time slot τ

U(τ) The total utility at time slot τ

P(τ) The total penalty of task dropping at time slot τ

R(τ) The total reward at time slot τ

Page 7 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

where Bi is the bandwidth eNBi allocates for the MD, and SNRi(τ) = ptx0 gi(τ)/σ
2 denotes

the signal-to-noise ratio (SNR), where ptx0 represents the transmission power of MD,
σ 2 is the Gaussian white noise power, and gi(τ) = ϕ[di(τ)]

−θ denotes the channel gain,
where ϕ and θ are the path-loss constant and path-loss exponent, respectively, and di(τ)
is the path distance. We assume that during each time slot τ , the MD does not move
much and hence ηi(τ) is a constant.

Let αi(τ) denote the number of tasks offloaded to eNBi , which must be taken from the
feasible set, i.e., αi(τ) ≤ z(τ), ∀i ∈ N  . Let βi(τ) denote the number of tasks processed by
eNBi at time slot τ , and βi(τ) ∈ {0, 1, . . . ,βmax} . Then, the evolution equation of the task
processing queue of eNBi is expressed as

After offloading
∑n

i=1 αi(τ) tasks to eNBs, z(τ)−
∑n

i=1 αi(τ) tasks will be put into the
task processing queue of MD. Then, the corresponding evolution equation is

where α0(τ) = z(τ)−
∑n

i=1 αi(τ) . Note that we use 0 to represent the index of MD and
use i to represent the index of eNB.

3.2 � Task execution model

A task can be handled locally or be offloaded to the eNBs. Here, we discuss the processes
of task local execution and task eNB execution, respectively. Typically, MD is equipped
with M-core CPU ( M ≥ 2 ). The state-of-the-art MD adopts an advanced DVFS tech-
nique, allowing automatic CPU frequency regulation. Suppose the working frequency of
m th CPU core is Fm(τ) , and then, the computing power of this MD can be expressed as
[31, 35]

where δ is a constant related to the chip architecture. In practice, the level of CPU fre-
quency is discrete and is bounded by a reasonable range, i.e., Fm(τ) ∈

{

Fmin, . . . , Fmax
}

 .

(1)ηi(τ) = Bi log2 [1+ SNRi(τ)]

(2)Li(τ + 1) = max {Li(τ)− βi(τ), 0} + αi(τ)

(3)L0(τ + 1) = max {L0(τ)− β0(τ), 0} + α0(τ)

(4)pex0 (τ) = δ

M
∑

m=1

F3
m(τ)

Fig. 1  The task offloading architecture in multi-eNB MEC

Page 8 of 24Li et al. J Wireless Com Network (2021) 2021:56

However, in [36], a conclusion has been justified that homogeneous CPU cores should
have the same operating frequency to reach the optimal power consumption, i.e.,
Fm(τ) = F(τ) . So, Eq. (4) can be rewritten as

The computational performance is also controlled by the CPU frequency. Besides,
we have the relation between the computation capacity and CPU frequency, i.e.,
c = F  . Then, we have

Thanks to the DFVS technique, the computation capacity c0(τ) of MD changes with
F(τ) variation. That means MD can adjust c0(τ) according to the computation require-
ment at time slot τ to optimize the energy consumption. Thus, if a task is executed on
MD, the execution time T ex

0 (τ) is calculated by

Then, the energy consumption Eex
0 (τ) , resulting from task execution on MD, is

expressed as

However, if MD offloads a task to eNB, the offloading process will be divided into
two steps. First, MD needs to select an eNB and transmit it by uploading correspond-
ing input data through the wireless access network. Then, the data transmission time
T tx
i (τ) of offloading task from MD to eNBi is computed by

Meanwhile, the energy consumption of the data transmission is represented by

Second, after receiving the tasks, eNBi put them into the processing queue Qi(τ) and
process them by the first-come-first-serve (FCFS) rule. Let ci(τ) denote the processing
capacity that eNBi allocates for MD. Then, the processing time of a task on the eNBi is
given as

Note that as the result of each task is the small data, we neglect the transmission
time and energy consumption by returning the execution results from eNBs to MD.

3.3 � Problem formulation

This section formulates the task offloading as an optimization problem. The objective
is to maximize the joint reward, including the utility of the finished task, the energy
consumption of MD, and the penalty of task dropping.

(5)pex0 (τ) = δMF3(τ)

(6)c0(τ) = MF(τ)

(7)T ex
0 (τ) = W /c0(τ)

(8)Eex
0 (τ) = Pex

0 (τ)T ex
0 (τ)

(9)T tx
i (τ) = D/ηi(τ)

(10)Etx
i (τ) = ptx0 T

tx
i (τ)

(11)T ex
i (τ) = W /ci(τ)

Page 9 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

At the beginning of each time slot τ , MD will generate z(τ) tasks. Then, it will decide
how many tasks should be offloaded to each eNB, i.e., (α1(τ), . . . ,αi(τ), . . . ,αn(τ)) , and
how many tasks should be processed locally, i.e., β0(τ) . According to Eqs. (8) and (10),
the total energy consumption at time slot τ is computed as follows:

where β0(τ)E
ex
0 (τ) is the execution energy for processing β0(τ) tasks, and

∑n
i=1 αi(τ)E

tx
i (τ) is the transmission energy for offloading

∑n
i=1 αi(τ) tasks to eNBs.

The task’s deadline constraint is considered. Let TDL denote the deadline constraint
for all the tasks. If the waiting time and execution time of task tj is less than and equal
to the deadline, i.e., T

(

tj
)

≤ TDL , the MD gains the u utility of successfully finished task;
otherwise, MD obtain zero utility. The above representation can be expressed as Eq. (13).

Note that the deadline constraint is measured by the number of the time slot. For
example, we can set TDL = NDLTslot , which means the task should be executed within
NDL time slots once it is generated. Also, it is worth pointing out that if a task is gener-
ated at time slot τ , the start execution time is τ if it is processed by MD; the start exe-
cution time is τ + 1 if it is offloaded to an eNB. Then, the total utility at time slot τ is
represented by

However, if a task misses the deadline, this task will be dropped, incurring the penalty.
Then, the penalty for dropping a task at time slot τ is computed by

where di(τ) is the number of dropped tasks of each eNB and MD. We can see from
Eqs. (12)–(15) that MD wants to maximize the utility, incurring less the penalty of
dropped tasks but more energy consumption. So, there exists the performance trade-off
among the utility, energy consumption, and penalty.

Under the deadline constraints, the optimization problem of task offloading is formu-
lated as follows:

(12)E(τ) = β0(τ)E
ex
0 (τ)+

n
∑

i=1

αi(τ)E
tx
i (τ)

(13)u
(

tj
)

=

{

u, T
(

tj
)

≤ TDL

0, otherwise

(14)U(τ) =

n
∑

i=0

βk (τ)
∑

j=1

u
(

tj
)

(15)P(τ) =

n
∑

i=0

di(τ)

(16a)max : R(τ) = U(τ)− E(τ)− P(τ)

(16b)subject to :

n
∑

i=0

αi(τ) ≤ z(τ)

Page 10 of 24Li et al. J Wireless Com Network (2021) 2021:56

where Eq. (16a) is the objective function of task offloading. Equation (16b) is the con-
straint of the number of offloaded tasks. Equation (16c) is the constraint of transmission
capacity for each link between MD and eNBi . Equation (16d) is the time constraint for
offloading tasks, and Eq. (16e) is the computing capacity constraint.

4 � Methods/experimental
Directly solving the optimization problem requires a set of a priori information from the
multi-eNB MEC system, such as ηi(τ) and z(τ) ; however, which cannot be obtained in
advance. Hence, we propose a model-free learning strategy DRL-E2D to tackle this kind
of stochastic optimization problem. DRL-E2D is based on reinforcement learning (RL),
so we first introduce the knowledge of DL. Then, we present the DRL-based task offload-
ing process with the actor-critic framework. Moreover, we also design an experimental
simulation to evaluate the performance of the proposed method and present the process
in detail.

4.1 � Preliminary of RL

RL system has an agent responsible for making optimal decisions, and anything out-
side the agent is called the environment. The interactions between the agent and the
environment are described via three essential elements: state, action, and reward. Spe-
cifically, the agent and environment interact at each sequence of discrete-time steps,
τ = {0, 1, 2, 3, . . .} . At each time step τ , the agent observes the system state sτ from the
environment and then learns the knowledge, and on that basis selects an action aτ . One
time step later, in part as a consequence of its action, the agent receives a numerical
reward rτ+1 , and finds itself in a new state sτ+1 . The learning process of the RL system
can be found in Fig. 2 [37]. The interaction between the agent and environment is gener-
ally achieved by the Markov Decision Process (MDP), a powerful dynamic optimization
theory. RL has already been considered as a very popular model-free decision method.

This paper integrates RL into task offloading to form a fast and effective offloading
policy for the multi-eNB MEC environment. In this case, the agent makes the task off-
loading strategy over a sequence of time steps with a stochastic system state to maximize

(16c)αi(τ) ≤ ηi(τ)/D, ∀i ∈ {0} ∪N

(16d)
n

∑

i=1

[αi(τ)/ηi(τ)] ≤ Tslot

(16e)βi(τ) ≤ ci(τ)/W ,∀i ∈ {0} ∪N

Fig. 2  The agent–environment interaction in MDP

Page 11 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

the cumulative reward. We first model our optimal offloading problem as an MDP, con-
sisting of four components: a state-space S , an action space A , a transition probability
distribution Ŵ , and a reward function R [37, 38].

The state at each time slot τ is represented as sτ . The agent observes sτ and makes an
offloading action aτ accordingly. Then, the environment changes the current state sτ to
the next state sτ+1 and offers a corresponding reward rτ+1 . Typically, the interactions
between agent and environment are viewed as a series of states, actions, and rewards:
s0, a0, r1, s1, a1, . . . , rτ , sτ . Note that the agent interacts with the environment producing
a series of states, actions, and rewards from an initial state to the terminal state, which is
called an episode.

A policy π is the mapping function from state s to action a . The objective is
to find a deterministic policy π to maximize the discounted cumulative reward
R0 =

∑T
τ=0 γ

τ r(sτ , aτ) , where r(·) is the reward function, and γ ∈ [0, 1] is the discount
rate. Then, the state-action value function Qπ (s, a) = E[R1|s0 = s, a0 = a,π] is the
expected return with state s , action a , and policy π . Qπ (s, a) can be calculated by the
Bellman optimality equation, which expresses the fact that the value of a state under an
optimal policy must equal the expected return for the best action from that state.

where both Q and π are approximated by parametrized functions. Then, the optimal pol-
icy πQ(s) is the policy that maximizes the Qπ (s, a).

This paper considers a case of task offloading from a single MD to multiple eNBs. In
this case, the MD is fully aware of the observation and will select actions by influenc-
ing state changes. In other words, this is in line with the MDP. Next, we will present the
actor-critic approach for implementing the task offloading problem with a large discrete
action space.

4.2 � DRL‑based task offloading

The RL method is short for the problem with large discrete state space, i.e., it faces the
well-known curse-of-dimensionality problem. Fortunately, Mnih et al. [12] have suc-
cessfully combined RL with deep learning, called DRL, yielding promising effects. We
use the DRL-based method to cope with task offloading for large discrete action space.
The system architecture builds upon the actor-critic framework [34], where the actor
is a reference to the learned policy, and critic refers to the learned value function, usu-
ally a state-value function. In the actor-critic framework, the policy is represented as
πθ : S → A , where πθ is the function approximator, which is the multi-layer deep neural
network. DDPG is adopted to train the optimal offloading policy. However, it is exten-
sively used in the RL problem with continuous action space. So, we should extract the
discrete actions from the continuous action space, which is solved by the K-NN approach
introduced next. The architecture of DRL-E2D is shown in Fig. 3. We first design the
state space, action space, and reward function of the multi-eNB task offloading problem.

(17)Qπ (s, a) = r(s, a)+ γ
∑

s′

P(s′|s, a)Qπ
(

s′,π
(

s′
))

(18)πQ(s) = arg max
a∈A

Q(s, a)

Page 12 of 24Li et al. J Wireless Com Network (2021) 2021:56

•	 State Space The state consists of three components: the length of the task process-
ing queue, the data transmission rate, and the number of arrived tasks at time slot
τ . Formally, the state vector sτ = [L0(τ), L1(τ), . . . , Ln(τ), η1(τ), . . . , ηn(τ), z(τ)] ,
where Li(τ) represents the queue length of the tasks to be processed in eNBi , L0(τ)
represents the queue length of the tasks to be processed in MD, ηi(τ) represents the
network state between MD and eNBi , and z(τ) is the number of tasks arriving at MD.

•	 Action Space Under the system status, MD chooses an action to perform. An
action is defined as the solution to task offloading. Formally, the action vector
aτ = [α0(τ), . . . ,αn(τ), c0(τ)] , where each action contains the number of tasks
αi(τ) that MD offloads to each eNB, the number of tasks reserved in local α0(τ) ,
and the computing capacity of MD regulated by DVFS. Note that α0(τ) is also
related to F(τ).

•	 Reward The reward is described in Eq. (16a), which is the integration of utility,
energy, and penalty.

Due to the well-known dimension disaster problem, which generally refers to the
exponential growth of state space with the change of a certain quantity, it will be very
difficult to solve this kind of MDP model. With the increase in the number of con-
nected eNBs and the maximum number of tasks, the state space will explode. This
situation will lead to traditional reinforcement learning, such as Q-learning, SARSA,
and so on, unable to apply. Because the Q table will be too large, the storage resources
will take up too much, and the query is complex. It is not suitable for mobile devices,
so we use DRL to solve this problem. We can use the neural network to perceive and
understand the state and then decide for action. In this way, the problem of dimen-
sion explosion of state space can be alleviated to some extent.

However, it is not only the state space that causes dimensional disaster, but also the
fact that an environment can have a large number of actions. In contrast to existing

Fig. 3  The architecture of DRL-E2D

Page 13 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

studies, our task offloading problem has a large number of discrete actions. This leads
to the poor performance of the traditional DRL algorithm, DQN, which is usually
used to solve small discrete action space problems. So, we combine the actor-critic
framework with the K-NN algorithm to cope with the situation of high-dimensional
state space and action space at the same time [34].

As can be seen from Fig. 3, first, the action space is embedded in advance. Embed-
ding tries to find the relationship between discrete values and express it as the distance
in continuous space. Here, embedding can be based on the complexity of action. If the
action is relatively simple, it can be completed by using simple mapping or coding. If the
action is relatively complex, it will be more convenient to use a neural network. We can
get the “distance” between actions by embedding. So, we can get a set of actions by the
K-NN method. All of them are then input into a critical network to get the Q value of
each nearest neighbor and select the maximum Q value to execute. Through the opera-
tion of K-NN, it is equivalent to reduce the dimension of action, which can effectively
improve the training effect and efficiency. Of course, it is also important to choose the k
value. Too large or too small may lead to training failure or too long.

The pseudo-code of DRL-E2D is shown in Algorithm 1. First, the network param-
eters and experience pool are initialized, and we start from line 4 for each episode
(lines 1–4). Then, we initialize the environment and the random model for explora-
tion (lines 5–6). Next, MD collects a certain number of tasks and then obtains the
observations from the environment (lines 7–8). For each time slot τ (lines 9–17),
we first input the current state into the actor-network, obtain an initial action, and
then get proto-action with the additional random process to explore. Then, k nearest
neighbors are extracted through the action embedding. Next, these selected actions
are, respectively, inputted into the critical network to get the Q value of each action,
and the action with the largest Q value will be selected. The traditional DDPG process
starts from lines 13 to 16 with performing tasks, calculating returns, and observing
new states. Then, it stores the quadruples in the experience pool and randomly takes a
mini-batch from the experience pool for network update.

Page 14 of 24Li et al. J Wireless Com Network (2021) 2021:56

4.3 � Experimental simulation

We consider a multi-eNB MEC environment with n eNBs, which are homogene-
ous and allocate the same computing capacity ci(τ) = 10GHz for MD’s task pro-
cessing. At each time slot τ , a batch of tasks arrives at the MD with the arrival rate
� = 10 . Suppose each arrived task has the same workload W = 2.5GHz s , data size
D = 10MB , and deadline constraint TDL = 3Tslot (i.e., NDL = 3 ). So, if a task is fin-
ished within the deadline constraint, MD will receive the utility u = 1 . For the task
offloading, the transmission power of MD is ptx0 = 250mW [39], the wireless net-
work bandwidth is B = 100MHz , and the other relative parameters are set as follows:
σ 2 = − 174 dbm/Hz , ϕ = 0.01 , and θ = 4 [40].

We assume that the number of CPU cores of MD is M = 4 , and the working fre-
quency of each CPU core is 2.0 GHz and can be adjusted in the set {1, 1.5, 2} by the
DVFS technique. Suppose the computational power is 900mW , and according to the
equation pex0 = δMF3 , δ is computed as 900/23 = 112.5mW/(GHz)3 [8]. We set the
length of each time slot Tslot = 1 second, and the number of time slots Nslot = 1000 ,
i.e., each episode includes 1000 iterations, which is long enough for obtaining the sta-
ble results.

In addition, three algorithms used to compare with our DRL-E2D are introduced
below.

Load Balance (LB) At each time slot τ , the arrived tasks are evenly distributed to the
MD and all the eNBs according to their computing capacity, i.e.,

where c0(τ) = cmax
0  . Note that αi(τ) is an integer, and the residual tasks z(τ)−

∑n
i=0 αi(τ)

will be executed on MD.
Remote Execution (Remote) All the tasks arrived at MD are routed to the eNBs, and

the number of allocated tasks of each eNB is computed by the data transmission rate
ηi(τ) , i.e.,

Note that if αi(τ) > ηi(τ)/D , the number of z(τ)−
∑n

i=1 max {αi(τ)− ηi(τ)/D, 0}
tasks will be dropped due to insufficient transmission capacity.

Local Execution (Local) All the tasks are executed on MD. So, there does not exist
the task offloading in this case.

DQN [12] DQN is a classic deep reinforcement learning method, which has been
widely used in many areas, e.g., task offloading and resource allocation [16–19, 33].
However, it can only address the problem with a small action space and cannot work
well in the problem of large action space [34].

Our proposed DRL-E2D algorithm is implemented by Tensorflow on Python. We
run and train the neural network model on the server with GPU: NVIDIA Tesla K40m
@ 12 GB and CPU: Intel Xeon E5-2620 v4 @ 2.10 GHz.

(19)αi(τ) =
Ci(τ)

∑n
j=0 Cj(τ)

z(τ)

(20)αi(τ) ←
ηi(τ)

∑n
j=1 ηj(τ)

z(τ)

Page 15 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

5 � Results and discussion
This section focuses on results analysis and the discussion of simulation experiments,
where we compare the DRL-E2D algorithm with other comparison algorithms and ana-
lyze the experimental results.

5.1 � The convergence analysis

As a description of algorithm design, the K-NN method is chosen to map continuous
action space to a discrete set [41]. This section focuses on the convergence analysis of
DRL-E2D and DQN. For DRL-E2D, we consider two cases: k = 1 and k = 1% , where
k = 1 means we only extract one action from the proto-action, and k = 1% indicates we
extract 1% of actions from the proto-action.

We first discuss the convergence of DRL-E2D and DQN on the different number of
eNBs n . Figure 4 shows the learning curves representing the total rewards, where we

Fig. 4  The convergence of DRL-E2D on different n . a n = 1 . b n = 3 . c n = 5

Page 16 of 24Li et al. J Wireless Com Network (2021) 2021:56

keep the other parameters fixed, i.e., � = 10 , W = 2.5GHz s , and D = 10MB . We can
see from Fig. 4a, b that the total reward increases steadily from 0 to 50 episodes. With
the larger action space, the convergence of DRL-E2D is more slowly, requiring 150 epi-
sodes to reach the maximum reward, as shown in Fig. 4c. Moreover, the DRL-E2D with
k = 1% always performs better than the case of k = 1 . This is because the larger k makes
value-based policies use action features to reason about unseen better actions. However,
we find that when n = 1 , the action space is less than 100, and the number of k = 1%
is less than 1. So, we only give the result of k = 1 in Fig. 4a. The DQN method always
learns slower than DRL-E2D. For example, the ultimate rewards of DQN under the case
of n = 1 , n = 3 , and n = 5 are about 2500, 6000, and 7000, respectively. This is because
DQN only works well in the small action space problem and cannot be applied in the
problem with large action space. The curve of n = 1 increases faster than that of n = 3
and n = 5 , as the action space of n = 1 is much smaller. Hence, Fig. 4 indicates that DQN
cannot converge to the stable state, and the larger n , the worse of the DQN convergence
with the same number of episodes.

Figure 5 plots the convergence of the DRL-E2D and DQN algorithm on different
task arrival rate � , where we fix n = 3 , W = 2.5GHz s , and D = 10MB . It can be seen
that with the fixed number of eNBs n , k = 1% and k = 1 converge to their maximum
rewards almost at 100 episodes. We also find that with the increase of � , the ulti-
mate reward goes up. For example, for k = 1% , the rewards are about 4500, 10,000,
and 10,500 when � = 5 , 12 , and 20 , respectively. The rationale is that with more tasks
arrived at MD, executing more tasks will incur higher utility. However, for k = 1% ,
the reward of � = 12 is slightly larger than that of � = 20 . This is because the sys-
tem resource almost becomes saturated when � is further increased ( � > 10 ), making
more tasks drop and, therefore, lowering the total reward. We can also observe that
the k = 1% always outperforms the k = 1 , demonstrating again that K-NN is a good
method for extracting actions from proto-action. So, we set k = 1% for the follow-
ing simulations. Similar to the varying of n , DQN always learns much slower than
DRL-E2D in all cases of � . For example, the rewards of DQN when � = 5 , � = 12 ,
and � = 20 are about 3700, 5600, and 7200, respectively. This is because DQN cannot
work well in the problem of large action space problem. With much smaller action
space, the curve of � = 5 increases much faster than that of � = 12 and � = 20 . Hence,
Fig. 5 shows DQN cannot converge to the stable state with 250 episodes.

5.2 � The impact of a number of eNBs n

The simulation results on three performance metrics, such as reward, energy con-
sumption, and the penalty of task dropping, are included. By varying the number of
eNBs n from 1 to 5 , are given in Fig. 6, where we keep the other parameters fixed, i.e.,
� = 10 , W = 2.5GHz s , and D = 10MB.

As shown in Fig. 6a, Local is independent of n , as it executes all the tasks on MD.
However, the rewards of DRL-E2D, Remote, LB, and DQN increase when n goes up.
This is because these algorithms can benefit from offloading tasks to eNBs. Moreover,
with more eNBs, MD obtain higher rewards, resulting from finishing more tasks and
consuming less energy. Figure 6b shows the energy consumption of all the algorithms.

Page 17 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

The energy consumption of Local is independent of n . The energy consumption of LB,
Remote, and DQN decreases when n increases. This is because the more eNBs, the
fewer tasks should be processed by the MD or each eNB. However, the energy con-
sumption of DRL-E2D is almost stable by varying n . The rationale is that to maximize
the reward, MD tends to drop tasks instead of executing them. The penalty of all the
algorithms (except Local) decreases with the increase of n , which is shown in Fig. 6c.
With the fixed task arrival rate � , fewer tasks will be dropped by offloading them to
eNBs.

5.3 � The impact of task arrival rate �

This section inspects the performance impact of task arrival rate � . We conduct the
experiments with � varying from 2 to 20, where we keep the other parameters fixed,

Fig. 5  The convergence of DRL-E2D on different � . a � = 5 . b � = 12 . c � = 20

Page 18 of 24Li et al. J Wireless Com Network (2021) 2021:56

i.e., n = 3 , W = 2.5GHz s , and D = 10MB . The related results are given in Fig. 7. Note
that the larger � , the more tasks will have arrived at MD.

From Fig. 7a, we find that DRL-E2D has the highest reward. We can also see that
the reward of DRL-E2D, LB, Remote, and DQN goes up with � . This is because the
more arrived tasks, the more tasks can be processed, incurring higher utility. How-
ever, failing to offload tasks, the reward of Local decreases when � increases. This is
reflected by the fact that Local prefers to drop tasks rather than execute them, which
can reduce energy consumption and bring high reward. For energy consumption in
Fig. 7b, all the algorithms go up with an increase of � . This is because of the larger � ,
the more tasks will be processed, leading to higher energy consumption. Particularly,
we find that the energy consumption of Local first increases and then keeps stable
because it selects to drop tasks instead of process tasks when � ≥ 6 . Figure 7c shows
that the penalty of all the algorithms increases with � . This indicates that the arrived
tasks under the existing parameter setting cannot be finished completely when � is

Fig. 6  The performance impact of n . a Reward. b Energy consumption. c Penalty

Page 19 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

too large due to insufficient computing resources. Notably, the increased speed of
Local is obviously faster than others, suggesting that it drops more tasks. Although
the penalty of DRL-E2D performs worse than that of LB, it still has a higher reward
because of the less energy consumption.

5.4 � The impact of workload W

We examine the performance impact of Workload W  . The results with W varying from
0.5 to 3 GHz s are shown in Fig. 8, where we keep the other parameters fixed, for exam-
ple, n = 3 , � = 10 , and D = 10MB . Note that the larger W means we need more com-
puting resources to finish a task.

As observed from Fig. 8a, with the increase of W  , the reward of all the algorithms goes
down. This is due to the fact that with the fixed task arrival rate � , the larger W requires
more computing resources, which leads to higher energy consumption, less finished
tasks and lower reward. Moreover, we find that the reward of Local decreases faster than
the other algorithms because of dropping more tasks. DRL-E2D always performs better

Fig. 7  The performance impact of � . a Reward. b Energy consumption. c Penalty

Page 20 of 24Li et al. J Wireless Com Network (2021) 2021:56

than others, indicating that it can achieve better performance and adapt the W varying.
We also find that the rewards of DQN are always less than that of DRL-E2D because
DQN cannot converge to an optimal value. Figure 8b gives the results of the energy con-
sumption of all the algorithms. When W varies from 1 to 3, the curve of the energy con-
sumption of the Local algorithm is flat, as it decides to drop tasks. This is because of only
considering the data transmission energy, the energy consumption of Remote has the
lowest energy consumption, and it is independent of W  . The energy consumption of LB,
DRL-E2D, and DQN increases with W  , as the larger W needs more computing resources
and time, thus incurring higher energy consumption. Figure 8c shows the results of the
penalty. We can see that with the increase of W  , the penalty of all the algorithms goes
up. In particular, the penalty of Local increases rapidly with W  , as it drops more tasks
than others.

Fig. 8  The performance impact of W . a Reward. b Energy consumption. c Penalty

Page 21 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

5.5 � The impact of data size D

To reveal the performance impact of data size D , we vary D from 2 to 20MB with an
increment of 2MB . The related simulation results are given in Fig. 9, where we keep
the other parameters fixed, for example, � = 10 , n = 3 , and W = 2.5GHz s . Note that
the larger D means needing more time to transmission data under the fixed transmis-
sion rate.

We can observe from Fig. 9a that the reward of all the algorithms except Local
decreases when D goes up. This is because DRL-E2D, LB, Remote, and DQN apply
the task offloading strategy. Thus, MD will cost much more energy consumption to
offload tasks to eNBs in the case of larger D . Nevertheless, the Local does not adopt
the task offloading, the reward of which is independent of D . The same reason can
be explained for the energy consumption and penalty of Local in Fig. 9b, c. Figure 9b
shows that the energy consumption of DRL-E2D, LB, Remote, and DQN slightly

Fig. 9  The performance impact of D . a Reward. b Energy consumption. c Penalty

Page 22 of 24Li et al. J Wireless Com Network (2021) 2021:56

increases with D , since the task offloading incurs more transmission energy with
the larger D . Due to the same reason, we also find that the penalty of DRL-E2D, LB,
Remote, and DQN increase with D . Especially, the penalty of Remote increases more
rapidly than other algorithms. This is because all the tasks should be transmitted to
eNBs according to the Remote algorithm, resulting in much more energy consump-
tion of data transmission.

6 � Conclusions and future work
This paper proposes a DRL-E2D algorithm for task offloading in a multi-eNB MEC
environment. Its goal is to maximize the reward (the weighted sum of utility, energy
consumption, and penalty of tasks dropping) under the task’s deadline constraint. The
architecture of DRL-E2D is based on the actor-critic framework, and the action repre-
sentation with the K-NN approach is developed to handle the large action space prob-
lem. The extensive simulation results have shown that: (1) the K-NN, as an approximate
approach of finding the nearest neighbor optimal actions, is indeed able to generalize
over the set of actions; (2) compared to several widely used baseline algorithms, DRL-
E2D always have better behaviors and significantly outperforms the LB, Remote, Local,
and DQN algorithms; (3) DRL-E2D is robust to system parameters, e.g., the number of
eNBs, task arrival rate, task workload, and the data size.

In the future work, we consider two aspects in task offloading: (1) security and pri-
vacy problems, which are very critical for mobile users and applications, as the data is
the important intellectual property; and (2) fault-tolerant scheduling problem, which
is also common in the MEC environment, as both the MEC server and MD will expe-
rience the failure of task execution due to hardware and software faults.

Abbreviations
MD: Mobile device; QoE: Quality of experience; MEC: Mobile edge computing; eNB: ENodeB; DRL: Deep reinforcement
learning; K-NN: K-nearest neighbor; MCC: Mobile cloud computing; DQN: Deep Q-network; DDPG: Deep deterministic
policy gradient; AI: Artificial intelligence; MDP: Markov decision process.

Authors’ contributions
ZL, VC, JG, LP, HH, and BH conceived and designed the study. ZL, VC, and LP performed the simulations. ZL wrote the
paper. All authors reviewed and edited the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China (Nos. 61802095, 61572162), the Zhejiang
Provincial Key Science and Technology Project Foundation (No. 2018C01012), the Zhejiang Provincial National Science
Foundation of China (No. LQ19F020011), the Open Foundation of State Key Laboratory of Networking and Switching
Technology (Beijing University of Posts and Telecommunications) (No. SKLNST-2019-2-15), and the VC Research (No. VCR
0000057).

Availability of data and materials
The details of the experimental parameters are given in Sect. 4.3.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China. 2 School of Computing
and Digital Technologies, Teesside University, Middlesbrough, UK. 3 State Key Laboratory for Novel Software Technology,
Software Institute, Nanjing University, Nanjing, China.

Received: 27 August 2020 Accepted: 9 March 2021

Page 23 of 24Li et al. J Wireless Com Network (2021) 2021:56 	

References
	1.	 F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, M.A. Javed, A survey of device-to-device communications: research issues

and challenges. IEEE Commun. Surv. Tutor. 20(3), 2133–2168 (2018)
	2.	 A.R. Khan, M. Othman, S.A. Madani, S.U. Khan, A survey of mobile cloud computing application models. IEEE Com-

mun. Surv. Tutor. 16(1), 393–413 (2014)
	3.	 P. Mach, Z. Becvar, Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun.

Surv. Tutor. 19(3), 1628–1656 (2017)
	4.	 X. Xu, X. Zhang, H. Gao, Y. Xue, L. Qi, W. Dou, BeCome: blockchain-enabled computation offloading for IoT in mobile

edge computing. IEEE Trans. Ind. Inform. 16(6), 4187–4195 (2020)
	5.	 K. Peng, M. Zhu, Y. Zhang, L. Liu, J. Zhang, V.C.M. Leung, L. Zheng, An energy- and cost-aware computation offload-

ing method for workflow applications in mobile edge computing. EURASIP J. Wirel. Commun. Netw. 19, 207 (2019)
	6.	 Cisco Systems, Cisco visual networking index: global mobile data traffic forecast update. Technique Report (2019)
	7.	 M. Chen, Y. Hao, Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel.

Areas Commun. 36(3), 587–597 (2018)
	8.	 T.Q. Dinh, J. Tang, Q.D. La, T.Q.S. Quek, Offloading in mobile edge computing: task allocation and computational

frequency scaling. IEEE Trans. Commun. 65(8), 3571–3584 (2017)
	9.	 X. Huang, K. Xu, C. Lai, Q. Chen, J. Zhang, Energy-efficient offloading decision-making for mobile edge computing in

vehicular networks. EURASIP J. Wirel. Commun. Netw. 2020(1), 35 (2020)
	10.	 T. Li, C. M. S. Magurawalage, K. Wang, K. Xu, K. Yang, H. Wang, in 37th IEEE International Conference on Distributed Com-

puting Systems (ICDCS). On efficient offloading control in cloud radio access network with mobile edge computing
(IEEE, 2017), pp. 2258–2263

	11.	 X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/
ACM Trans. Netw. 24(5), 2795–2808 (2016)

	12.	 V. Mnih et al., Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
	13.	 D. Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489

(2016)
	14.	 Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, D. Yang, in IEEE Conference on Computer Communications (INFO-

COM). Experience-driven networking: A deep reinforcement learning based approach (IEEE, 2018), pp. 1871–1879
	15.	 J. Li, Q. Liu, P. Wu, F. Shu, S. Jin, in IEEE/CIC International Conference on Communications in China (ICCC). Task offloading

for UAV-based mobile edge computing via deep reinforcement learning, (IEEE, 2018), pp. 798–802
	16.	 D. V. Le, C. K. Tham, in IEEE Conference on Computer Communications Workshops (INFOCOM Workshops). A deep rein-

forcement learning based offloading scheme in ad-hoc mobile clouds (IEEE, 2018), pp. 760–765
	17.	 J. Li, H. Gao, T. Lv, Y. Lu, in IEEE Wireless Communications and Networking Conference (WCNC). Deep reinforcement

learning based computation offloading and resource allocation for MEC (IEEE, 2018), pp. 1–6
	18.	 M.G.R. Alam, M.M. Hassan, M.Z. Uddin, A. Almogren, G. Fortino, Autonomic computation offloading in mobile edge

for IoT applications. Future Gener. Comput. Syst. 90, 149–157 (2019)
	19.	 H. Lu, C. Gu, F. Luo, W. Ding, X. Liu, Optimization of lightweight task offloading strategy for mobile edge computing

based on deep reinforcement learning. Future Gener. Comput. Syst. 102, 847–861 (2020)
	20.	 T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, in International Conference on Learning

Representations (ICLR). Continuous control with deep reinforcement learning (2016)
	21.	 R. Beraldi, A. Mtibaa, H. M. Alnuweiri, in International Conference on Fog and Mobile Edge Computing (FMEC). Coopera-

tive load balancing scheme for edge computing resources (2017), pp. 94–100
	22.	 C. Wang, F. R. Yu, Q. Chen, L. Tang, in IEEE International Conference on Communications (ICC). Joint computation and

radio resource management for cellular networks with mobile edge computing (IEEE, 2017), pp. 1–6
	23.	 Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, M.S. Hossain, Intelligent task prediction and computation offload-

ing based on mobile-edge cloud computing. Future Gener. Comput. Syst. 102, 925–931 (2020)
	24.	 J. Yan, S. Bi, Y.J. Zhang, M. Tao, Optimal task offloading and resource allocation in mobile-edge computing with inter-

user task dependency. IEEE Trans. Wirel. Commun. 19(1), 235–250 (2020)
	25.	 R. Wang, Y. Cao, A. Noor, T.A. Alamoudi, R. Nour, Agent-enabled task offloading in UAV-aided mobile edge comput-

ing. Comput. Commun. 149, 324–331 (2020)
	26.	 C. F. Liu, M. Bennis, H. V. Poor, in Global Communications Conference Workshops (GLOBECOM Workshops). Latency and

reliability-aware task offloading and resource allocation for mobile edge computing (2017), pp. 1–7
	27.	 C.F. Liu, M. Bennis, M. Debbah, H.V. Poor, Dynamic task offloading and resource allocation for ultra-reliable low-

latency edge computing. IEEE Trans. Commun. 67(6), 4132–4150 (2019)
	28.	 X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Optimal schedule of mobile edge computing for

internet of things using partial information. IEEE J. Sel. Areas Commun. 35(11), 2606–2615 (2017)
	29.	 Y. Sun, S. Zhou, J. Xu, EMM: energy-aware mobility management for mobile edge computing in ultra dense net-

works. IEEE J. Sel. Areas Commun. 35(11), 2637–2646 (2017)
	30.	 C. Li, J. Tang, Y. Luo, Dynamic multi-user computation offloading for wireless powered mobile edge computing. J.

Netw. Comput. Appl. 131, 1–15 (2019)
	31.	 L. Huang, S. Bi, Y.J. Zhang, Deep reinforcement learning for online computation offloading in wireless powered

mobile-edge computing networks. IEEE Trans. Mob. Comput. 19, 2581–2593 (2019)
	32.	 L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, X. Wang, Multi-user resource control with deep reinforcement learning in

IoT edge computing. arXiv​:1906.07860​ (2019)
	33.	 B. Huang, Y. Li, Z. Li, L. Pan, S. Wang, Y. Xu, H. Hu, Security and cost-aware computation offloading via deep reinforce-

ment learning in mobile edge computing. Wirel. Commun. Mob. Comput. 2019, 3816237:1–3816237:20 (2019)
	34.	 G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann, T. Weber, T. Degris, B. Coppin. Deep

reinforcement learning in large discrete action spaces. arXiv​:1512.07679​ (2015)
	35.	 F. Wang, J. Xu, X. Wang, S. Cui, Joint offloading and computing optimization in wireless powered mobile-edge

computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018)

http://arxiv.org/abs/1906.07860
http://arxiv.org/abs/1512.07679

Page 24 of 24Li et al. J Wireless Com Network (2021) 2021:56

	36.	 Y. Yao, L. Huang, A.B. Sharma, L. Golubchik, M.J. Neely, Power cost reduction in distributed data centers: a two-time-
scale approach for delay tolerant workloads. IEEE Trans. Parallel Distrib. Syst. 25(1), 200–211 (2014)

	37.	 R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT press, Cambridge, 2018).
	38.	 N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.C. Liang, D.I. Kim, Applications of deep reinforcement learning

in communications and networking: a survey. IEEE Commun. Surv. Tutor. 21(4), 3133–3174 (2019)
	39.	 W. Jiang, G. Feng, S. Qin, T.S. Peter Yum, G. Cao, Multi-agent reinforcement learning for efficient content caching in

mobile d2d networks. IEEE Trans. Wirel. Commun. 18(3), 1610–1622 (2019)
	40.	 Y. Mao, J. Zhang, S.H. Song, K.B. Letaief, Stochastic joint radio and computational resource management for multi-

user mobile-edge computing systems. IEEE Trans. Wirel. Commun. 16(9), 5994–6009 (2017)
	41.	 M. Muja, D.G. Lowe, Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach.

Intell. 36(11), 2227–2240 (2014)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Energy-aware task offloading with deadline constraint in mobile edge computing
	Abstract
	1 Introduction
	2 Related work
	2.1 General approaches for task offloading
	2.2 DRL-based approaches for task offloading

	3 System architecture, model, and problem formulation
	3.1 System architecture
	3.2 Task execution model
	3.3 Problem formulation

	4 Methodsexperimental
	4.1 Preliminary of RL
	4.2 DRL-based task offloading
	4.3 Experimental simulation

	5 Results and discussion
	5.1 The convergence analysis
	5.2 The impact of a number of eNBs
	5.3 The impact of task arrival rate
	5.4 The impact of workload
	5.5 The impact of data size

	6 Conclusions and future work
	References

