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The thick Quaternary loess on the Loess Plateau of China produces strong

seismic attenuation, resulting in weak reflections from subsurface exploration

targets. Accurately simulating seismic wavefield in the Loess Plateau is

important for guiding subsequent data processing and interpretation. We

present a 2D/3D wavefield simulation method for the Loess Plateau using a

viscoacoustic wave equation with explicitly expressed quality factor. To take

into account the effect of irregular surface, we utilize a vertically deformed grid

to represent the topography, and solve the viscoacoustic wave equation in a

regular computational domain that conforms to topographic surface. Grid

deformation introduces the partial derivatives such as zvx/zz and zvy/zz in

the wave equation, which is difficult to be accurately computed using

traditional staggered-grid finite-difference method. To mitigate this issue, a

finite-difference scheme based on a fully staggered-grid is adopted to solve the

viscoacoustic wave equation. Numerical experiments for a simple layer model

and 2D/3D realistic Loess Plateau models demonstrate the feasibility and

adaptability of the proposed method. The 3D modeling results show

comparable amplitude and waveform characteristics to the field data

acquired from the Chinese Loess Plateau, suggesting a good performance

of the proposed modeling method.
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Introduction

Seismic modeling always plays an important role in the study of

wave phenomenon, and provides numerical propagators for seismic

imaging and inversion (Bording and Lines, 1997; Virieux et al., 2009).

According to theoretical background and numerical implementation,

seismicmodeling approaches can be categorized into two basic groups

(Carcione et al., 2002): ray-based and wave-equation methods. Each

group has its own pros and cons, and both of them have been widely

used in seismic modeling, imaging and inversion.

Seismic ray is a high-frequency asymptotic solution of the wave

equation (Červený, 2001), of which the traveltime and amplitude are

determined by the eikonal and transport equations, respectively. It

decomposes the coupled wavefields into independent single-phase

waves, including direct wave, reflection, refraction, transmission,

converted wave, multiples, etc (Červený et al., 2007). This makes it

easy to study a specific wave phenomenon in complicated subsurface

structures. In the past half century, ray-based methods have evolved

from classical kinematic ray tracing (Julian and Gubbins, 1977; Um

and Thurber, 1987), through paraxial ray tracing (Beydoun and Keho,

1987) and Maslov asymptotic theory (Maslov et al., 1972; Chapman

andDrummond, 1982;Kendall andThomson, 1993), then toGaussian

beam (Červený et al., 1982;Müller, 1984; Nowack and Aki, 1984). Due

to high computational efficiency, ray-based Kirchhoff and beam

migrations have become routine tools for seismic imaging and

migration velocity analysis in the industry (Hill, 1990, 2001; Gray

and May 1994; Yang et al., 2018, 2022).

The other group of seismicmodeling is to directly solve thewave

equation onto a discretized grid using numerical solvers. Typical

numerical algorithms include finite-difference, finite-element,

pseudo-spectrum, spectrum-element and boundary-element

approaches (Carcione et al., 2002). Because of relatively cheap cost,

the finite-difference has been extensively used for wavefield simulation

(Kristek and Moczo, 2003; Etgen and O’Brien, 2007), reverse-time

migration (McMechan, 1989; Wu et al., 1996) and full-waveform

inversion (Mulder and Plessix, 2008; Vigh et al., 2009; Virieux and

Operto, 2009) in exploration seismology. Using the triangle or

tetrahedral mesh to discretize the geological model, the finite-

element approach can accurately simulate wave propagation in

strong heterogeneous media (Marfurt, 1984; De Basabe and Sen,

2009; Komatitsch et al., 2010). But due to large computational cost,

it is usually limited for small-scale problems, e.g., in the fault zone and

oil & gas reservoir. The spectrum-element method inherits the

flexibility of finite-element and the accuracy of spectral method,

and the diagonal mass matrix using a specific discretization and

integration rule results in a higher efficiency than finite-element

method (Komatitsch and Tromp, 1999; Komatitsch et al., 2000;

Komatitsch and Tromp, 2002). These advantages make it have be

widely applied to wavefield simulation and adjoint tomography in

regional and global seismology (Komatitsch et al., 2002; Tape et al.,

2009; Lei et al., 2020).

The Loess Plateau of China has the thickest and largest loess

coverage in the world, which was deposited in the Pleistocene under

particular geological, geomorphological and climatic conditions (Sun,

2002). Rich oil and gas resource under the loess promote extensive

seismic exploration in this area. Low-velocity loess layer and

complicated topography produce strong seismic attenuation and

scattering noise, resulting in deep reflections with a very low signal-

to-noise ratio (SNR). The low-quality observed data present a large

challenge for subsequent processing and interpretation (Wang et al.,

2004; Wang et al., 2014). Accurately simulating the wavefields of the

Loess Plateau helps to understand noise generation mechanism and

attenuation effect of thick loess layer, which can guide subsequent data

processing and imaging. In the wavefield modeling for the Loess

Plateau, it is necessary to take into account the irregular topography

and strong attenuation due to complex near-surface geology.

There are many rheological models to characterize seismic

attenuation during wave propagation. For instance, a complex-

valued velocity can be directly introduced into the frequency-

domain wave equation to describe phase dispersion and amplitude

dissipation (Liao andMcMechan, 1996; Stekl and Pratt, 1998; Aki and

Richards, 2002). On the other hand, in the time domain, the nearly

constant attenuation effect within a frequency band can be

implemented by a combination of springs and dashpots in series

and/or parallel (Carcione, 2007). Typical viscous models include

classical and generalized Maxwell body (Emmerich and Korn,

1987), Kelvin-Voigt body (Carcione et al., 2004), and standard

linear solid body (Liu et al., 1976; Carcione, 1993; Guo et al.,

2019). Using a fractional time derivative, Kjartansson (1979)

presented an alternative constant quality factor (Q) model to

describe the stress and strain relation. Zhu and Harris (2014)

utilized a fractional Laplacian operator to approximate the

fractional time derivative and obtained a simplified constant-Q

wave equation. Later, many hybrid-domain solvers, including local

homogeneous approximation (Chen et al., 2016; Wang et al., 2017;

Xing andZhu, 2019;Wang et al., 2022), low-rank approximation (Sun

et al., 2015), Hermite distributed approximation (Yao et al., 2017), are

proposed to produce more accurate numerically solution. Recently,

Yang and Zhu (2018) presented a complex-valued wave equation to

simulate viscoacoustic wave propagation, which has an explicitly

expressed Q and can be easily used in full-waveform inversion

(Yang et al., 2020).

The Loess Plateau of China has diverse geomorphic features, such

as hill, tableland, ditch, ridges and mounds, which results into a

complex irregular topography. In seismic modeling using the finite-

difference, many strategies have been developed to handle topography

and free surface. Levander (1988) implemented a flat free-surface

TABLE 1 The weights and decay times of three relaxation mechanisms
used in the viscoacoustic modeling.

Weights Value Decay times Value

D(1) 1.74278563 τ(1) 0.00159180

D(2) 1.41221145 τ(2) 0.01450505

D(3) 1.72183357 τ(3) 0.14020500
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boundary condition using the imagemethod. Later, this approach was

extended to highly irregular topography by Robertsson (1996). Mittet

(2002) treated elastic Hooke’s tensor on the free surface as that in a

transversely isotropicmedium and presented a simple implementation

of free-surface. Nakamura et al. (2012) proposed an efficient

Heterogeneity, Oceanic layer and Topography (HOT) finite-

difference method to compute wavefields at the solid-air, fluid-air

and fluid-solid boundaries. Instead of directly representing the

topography at a regularly and densely sampled Cartesian grid, an

alternative way is to transform the physical curved domain to a regular

computational grid (Hestholm and Ruud, 1994; Hestholm and Ruud,

1998). This curvilinear transformation can avoid the strong scatterings

from the staircase topography and is relatively easily to implement the

free-surface condition (Hestholm, 1999; Hestholm and Ruud, 2002;

Zhang et al., 2012). At current stage, this approach has been extended

to conform both topographic surface and interior layers in viscous and

anisotropic media (Sun et al., 2016; Shragge and Tapley, 2017; Konuk

and Shragge, 2020; Sun et al., 2021).

In this work, we present a viscoacousticmodelingmethod to study

seismic wave phenomena in the Loess Plateau. A viscoacoustic wave

equation is first derived based on a non-linear optimization for the

frequency-independentQ effect within a frequency band (Fichtner and

van Driel, 2014). To conform to the topographic surface, a vertically

deformedgrid is adopted to transform the irregular domain to a regular

computational coordinate (Jastram and Tessmer, 1994; de la Puente

et al., 2014). This strategy does not introduce asmany additional partial

FIGURE 1
An example of 2D topography to illustrate the basic parameters in the mapping from the physical space to computational domain.

FIGURE 2
Comparison of the node distribution in the standard (A) and fully (B) staggered-grid finite-difference methods. p denotes the pressure
wavefield, Φ denotes the memory variable, and vxi (xi=x, y, z) denotes particle velocity.
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derivatives as the curvilinear grid method that deforms along three

axises, and thus it does not increase too much computational cost

compared with that computed on traditional Cartesian grid. In

addition, to accurately compute the spatial derivatives such as zvx/

zz and zvy/zz, we apply a fully staggered-grid finite-difference scheme

(Lisitsa and Vishnevskiy, 2010; de la Puente et al., 2014) to

numerically solve the viscoacoustic wave equation on a

vertical deformed grid. Numerical experiments for a

simple layer model and 2D/3D Loess Plateau models as

well as a comparison between synthetic and field data

demonstrate the proposed method can accurately simulate

wave propagation in the Loess Plateau with thick loess layers.

FIGURE 3
Comparison of wavefield simulation in a homogeneousmedium. Panels (A,B) are acoustic (Ac) and viscoacoustic (Visco) wavefields at 0.5 s and
0.9 s. Panels (C,D) are single-trace comparisons extracted from (A,B). Blue solid lines denote acoustic results. Black solid lines denote viscoacoustic
results computed using the generalized standard linear solid (GSLS)method, which are used as the references. Red dot lines are the results computed
using the proposed method.

FIGURE 4
A three-layer model in the physical space (A) and computational domain (B). Red star denotes the source location, and magenta line denotes
receivers.
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Theory

Viscoacoustic wave equation with
explicitly expressed Q

In viscoacoustic medium, the pressure p (x, t) and particle

velocity v (x, t) satisfy a constitutive relation as

zp x, t( )
zt

� ∫∞

−∞
zκ x, t − t′( )

zt
∇ · v x, t′( )dt′, (1)

where v = (vx, vy, vz), and subscripts x, y and z denote particle

velocity components along different axises. κ(x, t) is a time-

dependent bulk modulus and can be constructed by superposing

N groups of relaxation mechanisms (Fichtner and van Driel, 2014):

FIGURE 5
Viscoacoustic wavefields of different propagation times with a top absorption boundary in the computational domain (A–C) and physical space
(D–F). The cyan lines in panels (D–F) denote the topography.

FIGURE 6
Viscoacoustic wavefields of different propagation times with a free-surface boundary in the computational domain (A–C) and physical space
(D–F). The cyan lines in panels (D–F) denote the topography.
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κ x, t( ) � κ0 x( ) 1 + 1
Q x( ) ∑Nl�1 D l( ) exp − t

τ l( )( )⎡⎣ ⎤⎦H t( ), (2)

where κ0(x) � ρ(x)v2p(x) is the relaxed bulk modulus, ρ(x)

and vp(x) denote the density and P-wave velocity, Q(x) is the

quality factor, and H(t) is the step function. D(l) and τ(l)

(1 < = l < = N) are the weights and decay times of different

relaxation mechanisms, which can be computed by solving a

non-linear optimization problem using a simulated annealing

process to fit the frequency-independent Q in a limited band. In this

study, we set the reference frequency to 1 Hz and the frequency band

to [1, 150] Hz with three relaxation mechanisms. The resulting

coefficients are shown in Table 1.

Taking the time derivative of κ(x, t), we have

zκ x, t( )
zt

� κ0 x( ) 1
Q x( ) ∑Nl�1 −D

l( )

τ l( ) exp − t

τ l( )( )( )H t( ) + 1 + s

Q x( )( )δ t( )⎡⎣ ⎤⎦,
(3)

where δ(t) is the Kronecker delta function, and s is the

summation of weights, i.e., s � ∑N
l�1 D(l). Inserting Eq. 3 into

the constitutive relation yields

zp x, t( )
zt

� κ0 x( ) 1 + s

Q x( )( )∇ · v x, t( ) − 1
Q x( ) ∑Nl�1 Φ l( ) x, t( )⎡⎣ ⎤⎦,

(4)
where the memory variables Φ(l)(x, t) are defined as

Φ l( ) x, t( ) � D l( )

τ l( ) ∫∞

−∞
exp −t − t′

τ l( )( )H t − t′( )∇ · v x, t′( )dt′, (5)

and satisfy

zΦ l( ) x, t( )
zt

� − 1
τ l( )Φ

l( ) x, t( ) + D l( )

τ l( ) ∇ · v x, t( ). (6)

Considering the second Newton law and assembling Eqs 4, 6,

we obtain a viscoacoustic wave equation with the explicitly

expressed Q as

FIGURE 7
(A–F) Comparisons of acoustic (left half panel) and viscoacoustic (right half panel) wavefields at different propagation times. A free surface is
used as the boundary condition on the topography. (G) Single-trace comparison at x = 3 km, and (H) corresponding spectra comparison, in which
blue lines denotes acoustic results and red lines denote viscoacoustic results. The cyan lines in (A–F) denote the topography.
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ρ x( ) zv x, t( )
zt

� ∇p x, t( ),

zp x, t( )
zt

� ρ x( )v2p x( ) 1 + s

Q x( )( )∇ · v x, t( ) − 1
Q x( ) ∑Nl�1 Φ l( ) x, t( )⎡⎣ ⎤⎦

+f t( )δ x − xs( ),
zΦ l( ) x, t( )

zt
� − 1

τ l( )Φ
l( ) x, t( ) + D l( )

τ l( ) ∇ · v x, t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where xs denotes the source location, and f(t) is the source time

function.

Compared with existing viscoacoustic wave equations,

such as the standard linear solid model (Carcione, 1990; Guo

and Mcmechan, 2017) and fractional-Laplacian method

(Zhu and Harris, 2014; Xing and Zhu, 2019), Eq. 7 has

the following advantages in seismic modeling. 1) The

quality factor Q is explicitly incorporated in the wave

equation, which does not need to be converted to stress

and strain relaxation times as in the standard linear solid

method. 2) Eq. 7 can be efficiently solved using any time-

domain finite-difference schemes, which does involves the

Fourier transform or more complicated mixed-domain

solvers as in the fractional Laplacian based methods. 3)

As shown in Fichtner and van Driel (2014), the

frequency-dependent Q effect can also be simulated by

recomputing the weights D(l) and relaxation times τ(l).

Representation of the topographic surface
on vertically deformed grids

To conform to the topographic surface of the

Loess Plateau, here we use a vertically deformed grid

to map the irregular physical space x = (x, y, z) to

a regular computational domain α = (α, β, γ), which is

given by

α � x,

β � y,

γ � γmax

z + ζ x, y( )
zmax + ζ x, y( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (8)

FIGURE 8
Common-shot gathers simulated with a top absorption boundary for the three-layer model. (A) Acoustic modeling, (B) viscoacoustic modeling
using the GSLS method, (C) viscoacoustic modeling using the proposed method, and (D) single-trace comparison at the offset of −2.3 km. The
amplitudes of panel (D) are normalized by the maximum value of direct waves.
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where ζ(x, y) is the elevation of topography (Figure 1), zmax

is the maximum depth of the region of interest, γmax =

zmax+ζmax, and ζmax is the maximum of elevation.

With the coordinate transform relation in Eq. 8, the partial

derivatives can be computed as

z

zx
� z

zα
+ γmax − γ

zmax + ζ x, y( ) zζ x, y( )
zx

[ ] z

zγ
,

z

zy
� z

zβ
+ γmax − γ

zmax + ζ x, y( ) zζ x, y( )
zy

[ ] z

zγ
,

z

zz
� γmax

zmax + ζ x, y( )[ ] z

zγ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

By setting

cx � γmax − γ

zmax + ζ x, y( ) zζ x, y( )
zx

,

cy � γmax − γ

zmax + ζ x, y( ) zζ x, y( )
zy

,

cz � γmax

zmax + ζ x, y( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

The viscoacoustic wave equation in Eq. 7 can be rewritten in

the new coordinate as

ρ α( ) zv α, t( )
zt

� �∇p α, t( ),

zp α, t( )
zt

� ρ α( )v2p α( ) 1 + s

Q α( )( )�∇ · v α, t( ) − 1
Q α( ) ∑Nl�1 Φ l( ) α, t( )⎡⎣ ⎤⎦

+f t( )δ α − αs( ),
zΦ l( ) α, t( )

zt
� − 1

τ l( )Φ
l( ) α, t( ) + D l( )

τ l( ) �∇ · v α, t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

With a generalized partial derivative operator

�∇ �

z

zα
+ cx

z

zγ

z

zβ
+ cy

z

zγ

cz
z

zγ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

The proposed viscoacoustic wavefield simulation in a

vertical stretched grid can be summarized into the

following steps. First, with the elevation of topography ζ(x,

y), we compute its derivative with respect to x and y and the

topography related coordinate stretching parameters cx and cy.

Then, the irregular physical space is mapped to a regular

FIGURE 9
(A–D) Common-shot gathers simulated with a top free-surface boundary for the three-layer model. The panel notifications are the same as in
Figure 8.
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computational domain by vertical stretching according to Eq.

8, in which velocity, density and Q parameters onto the

computational grids are calculated using a linear

interpolation method. Next, the viscoacoustic wave

equation 11 is solved in a regularly-sampled computational

domain using any available numerical solvers. Finally, the

wavefields in the real physical space are reconstructed by

mapping the extrapolated wavefields back with the same

interpolation algorithm used in the second step.

FIGURE 10
2D Loess Plateau model. (A) P-wave velocity model, (B) mapped velocity model in the computational domain, and (C) quality factor Q model.
The Q value above topography is 1,000 and is clipped to 80 for plotting.

TABLE 2 P-wave velocity and Q values of loess layers.

Layers P-wave velocity (m/s) Q Value

Weathering layer 550 5

Low-velocity layer 800 12

Transition layer 1500 48

Tertiary soil layer 2500 70
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Numerical implementation using a fully
staggered-grid finite difference scheme

Considering the trade-off of computational accuracy

and efficiency, we choose the time-domain staggered-grid

finite-difference scheme to solve the viscoacoustic wave Eq.

11. Because of vertical stretching, it is difficult for the

standard staggered-grid finite-difference method (Virieux,

1986) to accurately compute the partial derivatives such as

zvx/zγ and zvy/zγ. Here we discretize and solve the wave

equation using a fully staggered-grid approach (Lebedev,

1964; Lisitsa and Vishnevskiy, 2010; de la Puente et al.,

2014). The nodes distribution is presented in Figure 2.

Unlike the standard staggered-grid approach, the fully

staggered-grid finite-difference scheme has three particle

velocity components at the half grids (yellow triangles in

Figure 2B), and three additional pressure wavefields (red

circles in Figure 2B). For the time derivative, we still adopt a

second-order finite-difference method, which results in the

following updating scheme:

pn+1 � pn + Δtρv2p 1 + s

Q
( ) Dα + cxDγ( )vn+1/2x([

+ Dβ + cyDγ( )vn+1/2y + czDγv
n+1/2
z )] − 1

2Q
∑N
l�1

Φ l( ),n +Φ l( ),n+1( ),
Φ l( ),n+1 � 1 − Δt/ 2τ l( )( )

1 + Δt/ 2τ l( )( )Φ l( ),n + Δt
1 + Δt/ 2τ l( )( ) D l( )

τ l( ) Dα + cxDγ( )vn+1/2x[
+ Dβ + cyDγ( )vn+1/2y + czDγv

n+1/2
z ],

vn+3/2x � vn+1/2x + Δt
ρ

Dαp
n+1 + cxDγp

n+1[ ],
vn+3/2y � vn+1/2y + Δt

ρ
Dβp

n+1 + cyDγp
n+1[ ],

vn+3/2z � vn+1/2z + Δt
ρ

czDγp
n+1[ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

where Di (i = α, β, γ) denotes the finite-difference operator for first-

order spatial derivative. All components of pressure, particle velocity

and memory variable wavefields are iteratively computed based on

Eq. 13, and each partial derivative can be accurately calculated.

Taking pn+1 at (i, j, k) as an example, we compute Dαvn+1/2x and

Dγvn+1/2x using x-component particle velocities at (i ±m/2, j, k) and

FIGURE 11
(A–H) Viscoacoustic wavefields of 2D Loess Plateau model at different propagation times simulated with a top absorption boundary in the
computational domain (left column) and physical domain (right column). The cyan lines in panels (B,D,F, and H) denote the topography.
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FIGURE 12
(A–H)Viscoacoustic wavefields of different propagation times for the 2D Loess Plateaumodel simulatedwith a top free-surface boundary in the
computational domain (left column) and physical domain (right column). The cyan lines in panels (B,D,F, and H) denote the topography.

FIGURE 13
(A–D) Comparison of acoustic (left half panel) and viscoacoustic (right half panel) wavefields for the 2D Loess Plateau model at different
propagation times. The cyan lines denote the topography.
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(i, j, k ± m/2), compute Dβvn+1/2y and Dγvn+1/2y using y-component

particle velocities at (i, j ± m/2, k) and (i, j, k ± m/2), and compute

Dγvn+1/2z using z-component particle velocity at (i, j, k ± m/2),

respectively. m = (1, 2 . . . M), where M denotes the half length of

finite-difference operator. The other variables at different nodes can

be calculated using the same finite-difference scheme. In numerical

examples, we set theM = 4 and achieve an eighth-order accuracy in

space, and the staggered-grid finite-difference coefficients are

calculated using the Taylor expansion. To ensure the stability of

the finite-difference solver, the temporal increment needs to satisfy

the Courant-Friedrichs-Lewy (CFL) condition. In the vertically

stretched grid, the relation between time and space increments is

(the detailed derivation is given in Appendix A)

Δt≤ Δh

cvmax

�����������������������������������������
1 + s

Qmin
( ) 1 + cx,max( )2 + 1 + cy,max( )2 + cz,max( )2[ ]√ ,

(14)
where c is the summation of finite-difference coefficients, vmax

denotes the maximum velocity, Qmin denotes the minimum

quality factor value, and cxi,max (xi = x, y, z) denotes the

maximum value of topography associated coefficients in Eq. 10.

For acousticmedium and a flat surface,Q tends to infinity, cx= cy= 0

and cz = 1. Eq. 14 is simplified to a traditional CFL condition:

Δt≤ Δh�
3

√
cvmax

. (15)

The free-surface boundary condition in the viscoacoustic

modeling is implemented using a simple image method (Zhang

et al., 2012). In addition, because two types of grids at different

locations are coupled in the fully staggered-grid finite-difference

scheme, spurious waves may occur if loading source incorrectly

(Koene et al., 2021). To avoid these spurious waves, we adopt the

strategy proposed by Lisitsa and Vishnevskiy (2010) and de la

Puente et al. (2014), which is implemented for loading a point

source by adding the source function at a node of (i, j, k) and at

additional sub-nodes of (i ± 1/2, j ± 1/2, k) (i ± 1/2, j, k ± 1/2), (i,

j ± 1/2, k ± 1/2) with a scale of 0.25. Seismograms are extracted

using a similar strategy by summing the weighted records at a

main node and sub-nodes of receiver locations.

A simulation example for a homogeneous model is

presented in Figure 3. P-wave velocity is 3 km/s, Q is 50,

and a 200-m-thick vacuum layer is set at the top to simulate

surface reflections. Acoustic and two kinds of viscoacoustic

solvers are used to compute seismic wavefields, and the result

of generalized standard linear solid (GSLS) method is used as

a reference for comparison. Because of the phase dispersion

and energy dissipation, viscoacoustic waves propagate faster

than acoustic waves and have much weaker amplitudes

(Figures 3C,D). The surface at the z = 0 km produces a

reflection with opposite polarity compared with the direct

wave (Figure 3B). The waveforms computed using the

proposed method have good agreements with those of

FIGURE 14
Common-shot gathers of 2D Loess Plateau model (A,B) Viscoacoustic modeling with top absorption and free surface boundaries, (C,D)
comparison of acoustic (left half panel) and viscoacoustic (right half panel) records computed with top absorption and free surface boundaries.
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GSLS in terms of both phases and amplitudes (red dot and

black solid lines Figures 3C,D).

Numerical experiments

To test the performance of the proposed viscoacoustic

modeling method, we apply it to a simple layer model and

2D/3D realistic Loess Plateau models. In the computation, the

spatial accuracy of finite-difference is eighth order and the

temporal accuracy is second order.

A simple layer model

The first example is a three layer model, of which the

velocity and Q values are shown in Figure 4A. A sinusoidal

topography is designed to simulate the irregular surface. This

model is discretized on a 601 × 501 grid with a 10-m spatial

increment. A Ricker wavelet with the peak frequency of 15 Hz

is used as the source time function. The source is deployed

10 m below the topography, and 501 receivers are evenly

distributed horizontally on the observation surface. Time

increment is 1 ms and duration is 6 s. Figure 4B shows the

vertically distorted model in the computational domain. The

topography has been fattened, but the originally horizontal

interfaces in subsurface are curved. This coordinate

conversion make it easy to simulate wave propagation in

the near surface region.

FIGURE 16
Source and receiver distributions of three observation systems for 3D wavefield models. Red stars denote the source locations of three
experiments at the ditch (1), hill (2) and valley (3), and blue dots denote receivers.

FIGURE 15
3DLoessPlateaumodel. (A)P-wavevelocity, and (B)Qmodel. The
Q value above topography is 1,000 and is clipped to 80 for plotting.

Frontiers in Earth Science frontiersin.org13

Hu et al. 10.3389/feart.2022.1069166

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1069166


The snapshots computed by solving the viscoacoustic and

acoustic wave equations with and without the free surface are

presented in Figures 5, 6. In the computational domain, the

wavefronts of direct and reflected waves are distorted because of

cx, cy, and cz coefficients in Eq. 11 associated with the topography

(Figure 5A–C, Figure 6A–C). In contrast, in the physical domain, the

direct wave becomes regular with a half-circle wavefront, and

transmitted and reflected waves are generated at the interfaces

(Figure 5D–F, Figure 6D–F). The free surface at topography

produces complicated boundary reflections, which intersects with

deep effective wavefields (Figures 6D–F). Compared with acoustic

modeling results, viscoacousticwavefields have similar amplitudes and

phases during early time, but they show considerably traveltime and

amplitude differences as the propagation time increases (Figure 7).

The common-shot gathers are presented in Figures 8, 9. For

comparison, we also compute the record using the GSLS method

and utilize it as a reference, in which three relaxation mechanisms

are used to approximate a frequency-independent Q. Without the

free surface, common-shot records only have a direct wave and two

subsurface reflections. The direct waves computed using acoustic

and viscoacoustic simulations have similar waveforms due to short

propagation time. By contrast, the deep reflectors of viscoacoustic

records, especially for the one from second interface, have different

phases and much weaker amplitudes than acoustic records

(Figure 8D). The GSLS benchmark result has a good agreement

with that of the proposed method, indicating that the new method

can accurately simulate viscoacoustic propagation with irregular

topography (black solid lines and red dot lines in Figures 8D, 9D). In

FIGURE 17
Comparison of acoustic (A,C,E,G,I) and viscoacoustic (B,D,F,H,J) wavefields with the source location at the ditch (No. 1 in Figure 16).
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addition, the reflected events are no longer hyperbolic due to

topographic surface, and incorporating the free surface in the

modeling introduces many surface-related multiples (Figure 9).

2D Loess Plateau model

According to the outcrop of Chinese Loess Plateau, we build

a realistic model for seismic modeling (Figure 10). Four layers are

designed tomimic real loess structures: 1) a weathering layer with

dry loess, 2) a low-velocity layer with wet loess, 3) a transition

layer with water saturated loess, and 4) a Tertiary soil layer.

Detailed P-wave velocity and Q values of these layers are given in

Table 2. The maximum thickness of loess is about 300 m

(Figure 10A), and low Q values in the dry and wet loess

layers can produce strong seismic attenuation. This model is

discretized onto a 1,000 × 2601 grid with a 5-m spacing. The

source is located at x = 6.15 km horizontally and z = −1.18 km

vertically with a 15-Hz Ricker wavelet as the source time

function. The projected velocity in the computational domain

is shown in Figure 10B, of which the surface is flattened and

subsurface structures are slightly distorted.

FIGURE 18
Common-shot gathers of 3D Loess Plateau model with the source location at the ditch. (A) Acoustic modeling result, (B) viscoacoustic
modeling result, and (C) comparison of acoustic (Ac) versus viscoacoustic (Visco) modeling results.
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The snapshots in the computational domain and physical

space computed with and without the free surface are shown

in Figures 11, 12. With a top absorption boundary condition,

the reflected waves of subsurface interfaces can be clearly

distinguished from direct waves (Figure 11). The wavefronts

in the computational domain are slightly distorted and appear

to be non-continuous because of irregular topography (left

column in Figure 11). After mapping back to the physical

domain, the wavefields, especially for reflections, have regular

half-circle wavefronts (right column in Figure 11). By setting

the topography as a free surface, seismic waves propagate back

and forth between top surface and loess bottom vertically and

between hill and ditch horizontally, resulting in strong

multiple-like scatterings. These scatterings contaminate

effective reflections generated from deep interfaces

(Figure 12). Comparisons between acoustic and

viscoacoustic modeling show a similar result as in the

example of layer model (Figure 13). Their waveforms are

similar when the propagation time is less than 0.5 s

(Figure 13A). But as the time increases to 1 s, the

difference of phases and amplitudes can be visually

observed (Figure 13B). With a further longer duration,

viscoacoustic wavefields have considerably weaker

amplitudes than acoustic modeling results (Figures 13C,D).

The corresponding common-shot gathers are presented in

Figure 14. Large velocity contrasts between loess layers and

basement produce complicated refractions around the first break,

and irregular topography results in distorted non-hyperbolic

FIGURE 19
Comparison of acoustic and viscoacoustic wavefields with the source locations at the hill [(A,C,E,G,I), No. 2 in Figure 16] and valley [(B,D,F,H,J),
No. 3 in Figure 16].
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reflections (Figure 14A). Incorporating the free surface into

viscoacoustic modeling produces strong scattering noises near the

direct wave, and deep effective reflections are totally submerged in

the noise (Figure 14B). For comparison, we also compute acoustic

records using the same model and observation settings. Similar to

the analysis for snapshots, the events at a short time have similar

phases and amplitudes on acoustic and viscoacoustic records

(Figures 14C,D). But considerable difference of deep reflections

can be observed as the time increases due to attenuation-related

phase dispersion and amplitude dissipation. In addition, large-offset

refractions and scatterings near direct wave of viscoacoustic record

are much weaker than those of acoustic modeling results. This is

caused by strong attenuation in the low-Q loess layers.

3D Loess Plateau model

Because 2D modeling cannot accurately simulate the amplitudes

of seismic waves, we apply the proposed viscoacoustic modeling

method to a more realistic 3Dmodel (Figure 15). Compared with 2D

FIGURE 20
(A–C) Common-shot gathers of 3D Loess Plateau model with the source location at the hill. The panel notations are the same as those in
Figure 18.
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Loess Plateau model, geographic characteristics of loess distribution,

including typical ditch, hill and valley, aremore clearly visible in the 3D

model. The setting for Q in shallow loess layers is the same to that in

2D model. For deep sandstone strata, the well-logging data and rock

physics analysis show that P-wave velocity and Q models crudely

satisfy an empirical relation as Q � ��
vp

√
, where vp denotes P-wave

velocity with the unit of m/s. This model is discretized by 475 ×

1,301×800 nodes with a 10-m increment. 650 × 200 receivers along

inline and crossline directions are uniformly deployed to record

seismograms (blue dots in Figure 16). Three experiments are

carried out with sources in the ditch, hill and valley, respectively

(red stars in Figure 16). Time increment in the finite-difference is

0.5 ms and duration is 7 s.

The snapshots and common-shot gathers are presented in Figures

17, 18. Similar to 2D modeling, the interactions between topographic

free-surface and loess bottom produces strong scatterings in near-

surface region, which contaminate deep reflections (Figure 17). This

leads to typical “black-triangle” noise below the source location in the

records (Figure 18A). Without subsequent processing, it is difficult to

visually find hyperbolic reflections. Because of the geometric

FIGURE 21
(A–C) Common-shot gathers of 3D Loess Plateau model with the source location at the valley. The panel notations are the same as those in
Figure 18.
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spreading in a 3D volume, wavefield amplitude decays faster during

propagation than in the 2D case. In addition, seismic attenuation

introduces strong amplitude dissipation for viscoacoustic waves (right

column in Figure 17). This results in rather weak amplitudes at large-

offset traces and large observation time compared with acoustic

recordings (Figures 18B,C).

The modeling results of the other two experiments are shown

in Figures 19–21. Thicker loess sediments in the hill and valley

produce stronger attenuation effect on seismic waves than that in

the ditch, resulting in large amplitude and phase difference

between acoustic and viscoacoustic snapshots (Figure 19). The

phase dispersion and amplitude dissipation of viscoacoustic

recordings become more pronounced. The waveforms with

large offsets and times, including near-surface-related

scatterings and deep reflections, are attenuated quickly

(Figures 20, 21). In contrast to acoustic recordings, no events

can be observed visually at the time greater than 5 s. The low SNR

and weak amplitudes of recordings pose a great challenge for

subsequent seismic data processing and imaging.

Figure 22 shows the snapshots of 1.5 s on the observation surface

for three experiments. In the first experiment, strong scatterings are

generated and propagate along the north-south ditch (Figures 22A,B).

This is because the loess in the ditch was eroded, and the outcrop has a

relative higher velocity than the loess. In contrast, the experiments

excited on the hill and valley show an isotropic scattering pattern

(Figures 22C–F). In addition, the wavefields excited by the source on

the hill are affected by attenuation more largely than those excited in

the ditch and valley (Figures 22D,F). Comparisons of acoustic

modeling result, viscoacoustic modeling result and a common-shot

gather acquired fromChinese Loess Plateau are presented in Figure 23.

Note that both acoustic and viscoacoustic modeling can simulate

strong black-triangle scattering noise below the direct waves, which has

a consistent kinematic pattern with the field data. But acoustic records

have relatively stronger amplitudes for the time greater than 3 s

(Figure 23B). By incorporating seismic attenuation, viscoacoustic

modeling produces weak amplitudes for large-duration and large-

offset events, which have a good agreement with the amplitude

characteristic of field data (Figure 23C).

FIGURE 22
Acoustic (left column) and viscoacoustic (right column) wavefields on the topographic surface at 1.5 s. (A,B), (C,D), and (E,F) are the results
excited by the source at three different locations, respectively.
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Discussion

To study wave propagations in the Loess Plateau, we propose a

viscoacoustic modeling method based upon a wave equation with the

explicitly expressed Q. It does not need to convert Q to strain and

stress relaxation times as in the GSLSmethod. But compared with the

fractional Laplacian complex-valuedwave equations (Zhu andHarris,

2014; Yang and Zhu, 2018), the proposed equation does not separate

the dispersion and dissipation terms. This makes it not as easy as Zhu

and Harris (2014) and Yang and Zhu (2018)’s methods to directly

compensate forQ effect in the reverse-timemigration. An appropriate

Q-compensation strategy will be investigated for seismic imaging in

the future.

In this study, we do not incorporate the elasticity and

anisotropy into wavefield modeling, and therefore cannot

simulate S-wave propagation and P-S conversion. More

accurate wavefield simulation should be extended to an

anisotropic and anelastic medium, which can describe

both P- and S-wave propagations in the Loess Plateau.

But for elastic modeling, the S-wave velocity of loess

layers can be as low as 200–300 m/s. This requires a very

fine grid ( < 5 m) to avoid numerical dispersion in the finite-

difference modeling method, which will significantly

increase the computational cost. A combined grid

strategy, which uses a curvilinear grid in the near-surface

zone and a regular Cartesian grid at depth, can be introduced

to alleviate the computational burden (Sjögreen and

Petersson, 2012). In addition, the spectral-element method

based on a spatially varying grid is another way to accurately

simulate anisotropic and (an)elastic wave propagation in the

Loess Plateau (Komatitsch and Tromp, 1999).

From 2D/3D modeling results for the Loess Plateau model,

there is strong black-triangle scattering noise below the direct

waves, which is consistent with the field observation. The

generation mechanism of this type noise is similar to that of

interval multiples, which results from the wave propagation back

and forth between top free surface and loess bottom vertically

and between hill and ditch horizontally. If incorporating

elasticity in the modeling, surface waves will interact with the

scatterings and produce more complicated noise. In subsequent

processing, it is critical to remove the effect of strong black-

triangle noise to produce a high-quality image, and therefore

advanced signal processing techniques should be adopted to

suppress loess-related noise.

Conclusion

We present a 2D/3D viscoacoustic modeling method in

this work and apply it to simulate wave propagation in the

Loess Plateau. A viscoacoustic wave equation with the

explicitly expressed Q is first derived to describe the phase

dispersion and amplitude dissipation. Then, a vertically

deformed grid is used to conforms to the topographic

surface, which build a mapping relation between physical

space and computational domain. To accurately computed

the spatial derivatives, a fully staggered-grid finite-difference

scheme is utilized to solve the viscoacoustic wave equation in

the deformed grid. Numerical experiments demonstrate that

the proposed method can accurately simulate viscoacoustic

FIGURE 23
Comparison of synthetic common-shot gathers with field
data acquired from Chinese Loess Plateau. (A) 3D acoustic
modeling result, (B) 3D viscoacoustic modeling result, and (C) field
data.
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wave propagation in the Loess Plateau models. The 3D

modeling results show consistent kinematic and dynamic

characteristics with the field data acquired from the Loess

Plateau in China.
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Appendix A: Stability condition for the
finite-difference onto a vertical
stretched grid

According the energy analysis method (Yang et al., 2002), the

stability of the finite-difference solver for Eq. 13 requires the time

and space increments satisfying

Δt2 1 + s

Q
( ) 1

Δα + cx
1
Δγ( )2

+ 1
Δβ + cy

1
Δγ( )2

+ cz
1
Δγ( )2[ ]≤ 1

v2
(A1)

If the spatial increments are the same, i.e., Δh =Δα =Δβ =Δγ,
we have

Δt2
Δh2 1 + s

Q
( ) 1 + cx( )2 + 1 + cy( )2 + cz( )2[ ]≤ 1

v2
(A2)

Incorporating the finite-difference coefficients, the time

interval has to satisfy

Δt≤ Δh

cv

�������������������������������
1 + s

Q( ) 1 + cx( )2 + 1 + cy( )2 + cz( )2[ ]√ , (A3)

where c is the summation of finite-difference coefficients.

Considering the varying velocity, Q and topography slope, Eq.

A3 reduces to Eq. 14.
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