56 research outputs found

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    A Fast and Cost-Effective Detection of Melamine by Surface Enhanced Raman Spectroscopy Using a Novel Hydrogen Bonding-Assisted Supramolecular Matrix and Gold-Coated Magnetic Nanoparticles

    No full text
    A fast and cost-effective melamine detection approach has been developed based on surface enhanced Raman spectroscopy (SERS) using a novel hydrogen bonding-assisted supramolecular matrix. The detection utilizes Fe3O4/Au magnetic nanoparticles coated with 5-aminoorotic acid (AOA) as a SERS active substrate (Fe3O4/Au–AOA), and Rhodamine B (RhB) conjugated AOA as a Raman reporter (AOA–RhB). Upon mixing the reagents with melamine, a supramolecular complex [Fe3O4/Au–AOA•••melamine•••AOA–RhB] was formed due to the strong multiple hydrogen bonding interactions between AOA and melamine. The complex was separated and concentrated to a pellet by an external magnet and used as a supramolecular matrix for the melamine detection. Laser excitation of the complex pellet produced a strong SERS signal diagnostic for RhB. The logarithmic intensity of the characteristic RhB peaks was found to be proportional to the concentration of melamine with a limit of detection of 2.5 µg/mL and a detection linearity range of 2.5~15.0 µg/mL in milk. As Fe3O4 nanoparticles and AOA are thousands of times less expensive than the monoclonal antibody used in a traditional sandwich immunoassay, the current assay drastically cut down the cost of melamine detection. The current approach affords promise as a biosensor platform that cuts down sample pre-treatment steps and measurement expense

    Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries

    No full text
    The rational design and controllable synthesis of novel nanostructured metal oxide/graphene hybrid materials have attracted extensive attention for next-generation lithium ion batteries (LIBs). In this work, three dimensional (3D) graphene framework bonding ultrafine NiO nanocrystals are fabricated in situ through hydrothermal treatment and a subsequent thermal annealing strategy. During the material design process, the 2D bark-like Ni precursor which duplicated the morphology of GO was formed firstly by adjusting the amount of the structure-directing agent. Meanwhile, the 3D interconnected framework of graphene can be obtained via - interaction. Subsequently, thermal treatment was performed to transform the Ni precursors into NiO nanocrystals with an average particle size of 6.38 nm. The chemical bonding between the NiO nanocrystals and the graphene framework was confirmed by Raman and XPS analysis. Benefiting from the unique architecture, the hybrid anode material exhibits an ultrahigh reversible capacity of 1104 mA h g(-1) at a rate of 0.2C after 250 successive cycles, and an outstanding rate capability (440 mA h g(-1) at 3.0C). Moreover, superior capacity retention is also demonstrated.</p

    Orthodontically induced external apical root resorption considerations of root-filled teeth vs vital pulp teeth: a systematic review and meta-analysis

    No full text
    Abstract Introduction The purpose of this systematic review was to research the difference between root-filled teeth (RFT) and vital pulp teeth (VPT) in orthodontically induced external apical root resorption (EARR) and to offer suggestions for clinicians on therapeutic sequence and timing when considering combined treatment of endodontic and orthodontic. Materials and methods An electronic search of published studies was conducted before November 2022 in PubMed, Web of Science and other databases. Eligibility criteria were based on the Population, Intervention, Comparison, Outcome, and Study design (PICOS) framework. RevMan 5.3 software was used for statistical analysis. Single-factor meta-regression analysis was used to explore the sources of literature heterogeneity, and a random effects model was used for analysis. Results This meta-analysis comprised 8 studies with 10 sets of data. As there was significant heterogeneity among the studies, we employed a random effects model. The funnel plot of the random effects model exhibited a symmetrical distribution, indicating no publication bias among the included studies. The EARR rate of RFT was significantly lower than that of VPT. Conclusions In the context of concurrent endodontic and orthodontic treatment, priority should be given to endodontic therapy, as it serves as the foundation for subsequent orthodontic procedures. The optimal timing for orthodontic tooth movement post-root canal therapy is contingent upon factors such as the extent of periapical lesion resolution and the degree of dental trauma sustained. A comprehensive clinical assessment is essential in guiding the selection of the most suitable approach for achieving optimal treatment outcomes

    How do patients' perceptions and doctors' images impact patient decisions? Deconstructing online physician selection using multimodal data

    No full text
    In the post-pandemic era, medical resources are uneven, and access to healthcare is complicated. Online medical platforms have become a solution to bridge the information gap and reduce hospital pressure. This study uses the stereotype content model and signaling theory to explore the impact of patient perception of patient decision making (PDM) on online medical service platforms. Also, it tests the moderating effect of physician image. We collected information on 12,890 physicians and 746,981 patient reviews from online medical platforms in China. Unsupervised machine learning was used to construct a topic model to extract patients' perceptions of physicians' competence and warmth. Meanwhile, the facial features of physicians, such as age, smile, and glasses, are recognized by convolutional neural networks. Finally, the influence of PDM concern on decision-making and the moderating effect of physician image were analyzed by multiple linear regression. The results of the study showed that (1) patients' perceptions of physicians' competence and warmth had a positive effect on decision-making; (2) physicians' age and wearing glasses enhanced the positive effect of perception on decision-making; and (3) however, physicians' smiles weakened the positive effect of perception on decision-making. This study provides new insights into patients' online physician selection, guides the construction and promotion of medical service platforms, and provides an effective avenue of exploration to alleviate the problem of uneven distribution of offline medical resources

    Intestinal mucosal flora of the intestine-kidney remediation process of diarrhea with deficiency kidney-yang syndrome in Sishen Pill treatment: Association with interactions between Lactobacillus johnsonii, Ca2+-Mg2+-ATP-ase, and Na+-K+-ATP-ase

    No full text
    This study aims to investigate the effect of Sishen Pill on the characteristics of gut mucosal microbiota in diarrhea mice with deficiency kidney-yang syndrome. Fifteen Kunming male mice were randomly divided into Normal control group (C), Model self-healing group (X) and Sishen Pill group (S), with 5 mice/cages. Hematoxylin eosin (HE) staining was used to observe the kidney structure. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase were detected by enzyme-linked immunosorbent assay (ELISA), Analysis of intestinal mucosal flora using third-generation high-throughput sequencing. The relative abundance results in the three groups revealed that the dominant bacterial genera: Lactobacillus, Muribaculum and Candidatus-Arthromitus; bacterial species: Lactobacillus johnsonii, Lactobacillus reuteri, Lactobacillus murinus, and Lactobacillus intestinalis, and differences in the presence of major microbiota between the X and S groups. A positive correlation between Lactobacillus johnsonii and both Ca2+-Mg2+-ATP-ase and Na+-K+-ATP-ase was found via correlation analysis. Sishen Pill also changed the manufacture of other secondary metabolites, as well as the metabolism of carbohydrates, glycans, energy, lipids, and other amino acids, and xenobiotics biodegradation and metabolism. In conclusion, Sishen Pill improved kidney structure, energy metabolism and the diversity and structure of intestinal mucosal flora. In addition, Lactobacillus johnsonii may be a characteristic species of Sishen Pill in treating diarrhea with kidney-yang deficiency syndrome

    Discovery of hydrogen spillover-based binary electrocatalysts for hydrogen evolution: from theory to experiment

    No full text
    Hydrogen spillover-based binary (HSBB) catalysts have attracted more and more attention in recent years because of their unique reaction mechanism, different from traditional single-component catalysts. In this paper, using density functional theory for the screening of materials, we find 11 candidates with excellent hydrogen evolution reaction (HER) performance under acidic conditions. Among them, Pt1Ir1-MoS2has been successfully synthesized and verified through experiment to have exhibited the outstanding catalytic performance as predicted. Detailed analysis of these HSBB catalysts reveals the key role of hydrogen spillover toward efficient water splitting, paving the way for the discovery of widely applicable materials and a feedback loop that delivers materials as designed. Greatly increasing the number of known HSBB catalysts, the current study not only demonstrates the accuracy of our screening of materials but also provides a novel paradigm for accelerating the development of materials and reducing costs.Submitted/Accepted versionFinancial support from the National Natural Science Foundation of China (No. 21676216), the Natural Science Foundation of Shaanxi province, China (Nos. 2019JLP-03 and 2019JM-294), the Special Project of Shaanxi Provincial Education Department (No. 20JC034), the Hefei Advanced Computing Center, and the GHfund B (202202022563) is gratefully acknowledged

    Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries

    No full text
    Mn3O4/N-doped graphene (Mn3O4/NG) hybrids were synthesized by a simple one-pot hydrothermal process. The scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG), Raman Spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the microstructure, crystallinity and compositions. It is demonstrated that Mn3O4 nanoparticles are high-dispersely anchored onto the individual graphene nanosheets, and also found that, in contrast with pure Mn3O4 obtained without graphene added, the introduction of graphene effectively restricts the growth of Mn3O4 nanoparticles. Simultaneously, the anchored well-dispersed Mn3O4 nanoparticles also play a role as spacers in preventing the restacking of graphene sheets and producing abundant nanoscale porous channels. Hence, it is well anticipated that the accessibility and reactivity of electrolyte molecules with Mn3O4/ NG electrode are highly improved during the electrochemical process. As the anode material for lithium ion batteries, the Mn3O4/NG hybrid electrode displays an outstanding reversible capacity of 1208.4 mAh g(-1) after 150 cycles at a current density of 88 mA g(-1), even still retained 284 mAh g(-1) at a high current density of 4400 mA CI- after 10 cycles, indicating the superior capacity retention, which is better than those of bare Mn3O4, and most other Mn3O4/C hybrids in reported literatures. Finally, the superior performance can be ascribed to the uniformly distribution of ultrafine Mn3O4 nanoparticles, successful nitrogen doping of graphene and favorable structures of the composites.</p

    Day-night cycle as a key environmental factor affecting coral-Symbiodiniaceae symbiosis

    No full text
    Interpreting the coral-Symbiodiniaceae symbiosis in light of the day-night cycle may provide missing links in understanding the function of endosymbiosis. In this study, we found the photo-physiology, Symbiodinaiceae cell density and gene transcription of two coral holobionts (Acropora pruinosa-Cladocopium sp. and Pocillopora damicornis-Durusdinium sp.) have clear day-night oscillations. These two coral holobionts showed lower maximum quantum yield of photosystem II but higher Symbiodiniaceae cell density at day-time, as compared to at night-time. At day-time, the genes related to circadian rhythm and symbiosis in both hosts were up-regulated, while those related to immunity were down-regulated. Simultaneously, both symbionts had lower abundances of genes involved in the light reaction, Calvin cycle and glycolysis, but higher abundances of genes involved in the NH4+ assimilation. These results indicated the high density of Symbiodiniaceae at day-time might be attributed to up-regulating of genes involved in symbiosis and nitrogen metabolism but down-regulating of genes involved in immunity. Moreover, the A. pruinosa-Cladocopium sp. holobiont had larger day-night oscillations than P. damicornis-Durusdinium sp. holobiont, in terms of photo-physiology, Symbiodinaiceae cell density and gene transcription, revealing species-specific day-night oscillation. This study provides valuable insights into the cooperation strategies of coral holobionts to adapt to the day-night environmental changes
    corecore