34 research outputs found

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe

    Pan-cancer analysis of super enhancer-induced PRR7-AS1 as a potential prognostic and immunological biomarker

    Get PDF
    Introduction: Systematic pan-cancer analysis of the roles and regulatory mechanisms for PRR7-AS1 is currently not available.Methods: In the present study, a comprehensive bioinformatic approach was used to mine the underlying oncogenic effects of PRR7-AS1, including expression status, prognostic value and immune characteristics.Results: We discovered that PRR7-AS1 expression was remarkably upregulated in most cancer types and exhibited a negative correlation with the prognosis. Furthermore, PRR7-AS1 expression was inversely connected with the majority of tumor-infiltrating immune cells, immune scores and immune checkpoint gene expression in pancancer. There was also a significant correlation between PRR7-AS1 expression status and tumor mutational burden, microsatellite instability, and neoantigens in certain tumors. PRR7-AS1 had the best predictive power for immune checkpoint blockade efficacy compared to other well-recognized biomarkers. PRR7-AS1 overexpression could affect cytotoxic T cells-mediated antitumor responses. Functional enrichment analysis revealed that PRR7-AS1 might be involved in the metabolic pathways. Super enhancer activity might have participated in the regulation of PRR7-AS1 expression. And we constructed the competitive endogenous RNA networks for PRR7-AS1.Discussion: In general, PRR7-AS1 had the potential to be a diagnostic, prognostic and immune biomarker for pan cancer. PRR7-AS1 was correlated with an immunosuppressive microenvironment and was a new potential target for immunotherapy. Epigenetic factors were the driving forces for PRR7-AS1 overexpression in tumors

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Amine-Functionalized Titanate Nanosheet-Assembled Yolk@Shell Microspheres for Efficient Cocatalyst-Free Visible-Light Photocatalytic CO<sub>2</sub> Reduction

    No full text
    Exploiting advanced semiconductor photocatalyst with superior activity and selectivity for the conversion of CO<sub>2</sub> into solar fuels and valuable chemicals is of worldwide interest. In this report, hierarchical amine-functionalized titanate nanosheets based yolk@shell microspheres were synthesized via one-pot organic amine mediated anhydrous alcoholysis of titanium­(IV) butoxide. The selected organic amine, diethylenetriamine, played multiple roles. First, it was essential for the crystallographic, morphological and textural control of the synthesized titanate nanoarchitectures. Second, it was crucial for the in situ functionalization of titanate nanosheets by concurrent interlayer intercalation and surface grafting, which gave rise to the strong visible-light absorption ability and high CO<sub>2</sub> adsorption capacity. As a consequence of the synergetic tuning in multilevel microstructures, an integrated engineering of the multifunctional modules of the titanate-based photocatalysts was achieved for efficient CO<sub>2</sub> reduction toward solar fuels

    Holographic response from higher derivatives with homogeneous disorder

    No full text
    In this letter, we study the charge response from higher derivatives over the background with homogeneous disorder introduced by axions. We first explore the bounds on the higher derivatives coupling from DC conductivity and the anomalies of causality and instabilities. Our results indicate no tighter constraints on the coupling than that over Schwarzschild–AdS (SS–AdS) background. And then we study the optical conductivity of our holographic system. We find that for the case with γ1<0 and the disorder strength αˆ<2/3, there is a crossover from a coherent to incoherent metallic phase as αˆ increases. When αˆ is beyond αˆ=2/3 and further amplified, a peak exhibits again at low frequency. But it cannot be well fitted by the standard Drude formula and new formula for describing this behavior shall be called for. While for the holographic system with the limit of γ1→1/48, the disorder effect drives the hard-gap-like at low frequency into the soft gap and suppresses the pronounced peak at medium frequency

    Analysis of the ASMT Gene Family in Pepper (Capsicum annuum L.): Identification, Phylogeny, and Expression Profiles

    No full text
    Acetylserotonin methyltransferase (ASMT) in plant species, one of the most important enzymes in melatonin biosynthesis, plays a rate-limiting role in the melatonin production. In this study, based on the whole genome sequence, we performed a systematic analysis for the ASMT gene family in pepper (Capsicum annuum L.) and analyzed their expression profiles during growth and development, as well as abiotic stresses. The results showed that at least 16 CaASMT genes were identified in the pepper genome. Phylogenetic analyses of all the CaASMTs were divided into three groups (group I, group II, and group III) with a high bootstrap value. Through the online MEME tool, six distinct motifs (motif 1 to motif 6) were identified. Chromosome location found that most CaASMT genes were mapped in the distal ends of the pepper chromosomes. In addition, RNA-seq analysis revealed that, during the vegetative and reproductive development, the difference in abundance and distinct expression patterns of these CaASMT genes suggests different functions. The qRT-PCR analysis showed that high abundance of CaASMT03, CaASMT04, and CaASMT06 occurred in mature green fruit and mature red fruit. Finally, using RNA-seq and qRT-PCR technology, we also found that several CaASMT genes were induced under abiotic stress conditions. The results will not only contribute to elucidate the evolutionary relationship of ASMT genes but also ascertain the biological function in pepper plant response to abiotic stresses

    Ga 2

    No full text

    Genome-wide characterization of ascorbate peroxidase gene family in pepper (Capsicum annuum L.) in response to multiple abiotic stresses

    Get PDF
    Pepper is widely grown all over the world, so it faces many abiotic stresses, such as drought, high temperature, low temperature, salt damage, and so on. Stresses causing the accumulation of reactive oxidative species (ROS) in plants are removed by antioxidant defense systems, and ascorbate peroxidase (APX) is an important antioxidant enzyme. Therefore, the present study performed genome-wide identification of the APX gene family in pepper. We identified nine members of the APX gene family in the pepper genome according to the APX proteins’ conserved domain in Arabidopsis thaliana. The physicochemical property analysis showed that CaAPX3 had the longest protein sequence and the largest molecular weight of all genes, while CaAPX9 had the shortest protein sequence and the smallest MW. The gene structure analysis showed that CaAPXs were composed of seven to 10 introns. The CaAPX genes were divided into four groups. The APX genes of groups I and IV were localized in the peroxisomes and chloroplasts, respectively; the group II genes were localized in the chloroplasts and mitochondria; and the group III genes were located in the cytoplasm and extracell. The conservative motif analysis showed that all APX genes in the pepper had motif 2, motif 3, and motif 5. The APX gene family members were distributed on five chromosomes (Chr. 2, 4, 6, 8, and 9). The cis-acting element analysis showed that most CaAPX genes contain a variety of cis-elements related to plant hormones and abiotic stress. RNA-seq expression analysis showed that the expression patterns of nine APXs were different in vegetative and reproductive organs at different growth and development stages. In addition, the qRT-PCR analysis of the CaAPX genes revealed significant differential expression in response to high temperature, low temperature, and salinity stresses in leaf tissue. In conclusion, our study identified the APX gene family members in the pepper and predicted the functions of this gene family, which would provide resources for further functional characterization of CaAPX genes
    corecore