123 research outputs found

    Effects of transgenic Cry1Ac + CpTI cotton on non-target mealybug pest Ferrisia virgata and its predator Cryptolaemus montrouzieri

    Get PDF
    Recently, several invasive mealybugs (Hemiptera: Pseudococcidae) have rapidly spread to Asia and have become a serious threat to the production of cotton including transgenic cotton. Thus far, studies have mainly focused on the effects of mealybugs on non-transgenic cotton, without fully considering their effects on transgenic cotton and trophic interactions. Therefore, investigating the potential effects of mealybugs on transgenic cotton and their key natural enemies is vitally important. A first study on the effects of transgenic cotton on a non-target mealybug, Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae) was performed by comparing its development, survival and body weight on transgenic cotton leaves expressing Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) with those on its near-isogenic non-transgenic line. Furthermore, the development, survival, body weight, fecundity, adult longevity and feeding preference of the mealybug predator Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) was assessed when fed F. virgata maintained on transgenic cotton. In order to investigate potential transfer of Cry1Ac and CpTI proteins via the food chain, protein levels in cotton leaves, mealybugs and ladybirds were quantified. Experimental results showed that F. virgata could infest this bivalent transgenic cotton. No significant differences were observed in the physiological parameters of the predator C. montrouzieri offered F. virgata reared on transgenic cotton or its near-isogenic line. Cry1Ac and CpTI proteins were detected in transgenic cotton leaves, but no detectable levels of both proteins were present in the mealybug or its predator when reared on transgenic cotton leaves. Our bioassays indicated that transgenic cotton poses a negligible risk to the predatory coccinellid C. montrouzieri via its prey, the mealybug F.virgata

    Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting

    Get PDF
    In this work, we report on defects generation in TiO2 inverse opal (IO) nanostructures by electrochemical reduction in order to increase photocatalytic activity and improve photoelectrochemical (PEC) water splitting performance. Macroporous structures, such as inverse opals, have attracted a lot of attention for energy-related applications because of their large surface area, interconnected pores, and ability to enhance light-matter interaction. Photocurrent density of electrochemically reduced TiO2-IO increased by almost 4 times, compared to pristine TiO2-IO photoelectrodes. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses confirm the presence of oxygen vacancies in electrochemically reduced TiO2-IO photoelectrodes. Oxygen vacancies extend the absorption of TiO2 from the UV to visible region. The incident photon-to-current efficiency (IPCE) increased by almost 3 times in the absorption (UV) region of TiO2 and slightly in the visible region. Impedance studies show improved electrical conductivity, longer photogenerated electron lifetime, and a negative shift of the flatband potential, which are attributed to oxygen vacancies acting as electron donors. The Fermi level shifts to be closer to the conduction band edge of TiO2-IO.Australian Research Council (ARC)

    Electrochemical hydrogenation of mixed-phase TiO₂ nanotube arrays enables remarkably enhanced photoelectrochemical water splitting performance

    Get PDF
    We first report that photoelectrochemical (PEC) performance of electrochemically hydrogenated TiO2 nanotube arrays (TNTAs) as high-efficiency photoanodes for solar water splitting could be well tuned by designing and adjusting the phase structure and composition of TNTAs. Among various TNTAs annealed at different temperature ranging from 300 to 700 °C, well-crystallized single anatase (A) phase TNTAs-400 photoanode shows the best photoresponse properties and PEC performance due to the favorable crystallinity, grain size and tubular structures. After electrochemical hydrogenation (EH), anatase-rutile (A-R) mixed phase EH-TNTAs-600 photoanode exhibits the highest photoactivity and PEC performance for solar water splitting. Under simulated solar illumination, EH-TNTAs-600 achieves the best photoconversion efficiency of up to 1.52% and maximum H2 generation rate of 40.4 µmol h−1 cm−2, outstripping other EH-TNTAs photoanodes. Systematic studies reveal that the signigicantly enhanced PEC performance for A-R mixed phaes EH-TNTAs-600 photoanode could be attributed to the synergy of A-R mixed phases and intentionally introduced Ti3+ (oxygen vacancies) which enhances the photoactivity over both UV and visible-light regions, and boosts both charge separation and transfer efficiencies. These findings provide new insight and guidelines for the construction of highly efficient TiO2-based devices for the application of solar water splitting.This work was supported by the National Natural Science Foundation of China (51402078, 21702041, and 11674354), the National Basic Research Program of China (2014CB660815), and the Fundamental Research Funds for the Central Universities (JZ2016HGTB0711, JZ2016HGTB0719, and JZ2017HGPA0167)

    OR-012 The Regulation of NF-κB-TNF-α/IDO/5-HT Axis by Aerobic Exercise against Hippocampal Neuroinflammation in CUMS Depressive Mice

    Get PDF
    Objective To study the effect of aerobic exercise on the anti-chronic stress depression and the key metabolic enzymes indoleamine 2,3 peroxidase (IDO) of tryptophan and kynurenine pathway. Methods  Adopt the method of random numbers to make depression modelling for mice with 1 or 2 kinds of stimulating factors for 28 days in view of the 13 kinds of chronic stress stimulation. Collect and analyse motionless time for FST and TST of mice by using the Noldus EthoVision XT9 system. Test the serum factor level of laboratory mice with Cusabio imported IDO, NF-ƙB and TNF-α kit. Make real-time fluorescent quantitative PCR verification of the mRNA expression and protein expression level of IDO, 5-HT, NF-ƙB and TNF-α in hippocampus. Results After 4 weeks of chronic stress stimulation, the motionless time for FST and TST of mice in the Model Group obviously prolonged (p<0.05). The bioactivity of IDO, NF-ƙB and TNF-α in hippocampus increased. The mRNA expression of IDO, NF-ƙB and TNF-α in hippocampus increased, while the mRNA expression of 5-HT decreased (p<0.01). Aerobic exercise can shorten the motionless time of mice, inhibit the activity of IDO, NF-ƙB and TNF-α, reduce the mRNA expression quantity of IDO, NF-ƙB and TNF-α and enhance the expression of 5-HT. Conclusions Aerobic exercise has an antidepressant effect on mice for chronic stress depression, which is related to the IDO activation induced by inhibit inflammatory cytokines. Aerobic exercise may inhibit the NF-ƙB to reduce the pathway of tryptophan and kynurenine, affect the direct and indirect induced effect of IDO, and adjust its activity and expression

    Cobalt-based electrode materials for sodium-ion batteries

    Get PDF
    The demand for grid-scale energy storage systems has rapidly grown over recent years, to meet the requirements of structural innovation within the energy industry. Due to their inexpensive manufacturing and operating costs, and the similar electrochemical mechanism with the well-established lithium-ion batteries (LIBs), sodium ion batteries (SIBs) have been considered as an attractive candidate for grid-scale energy storage systems. A variety of cobalt-based cathode and anode materials, including cobalt oxides, cobalt chalcogenides and layered sodium cobaltates, have been synthesized and evaluated for sodium storage within the academic literature. In this article, we present a comprehensive review of the recent progress with cobalt-based electrodes (both as an anode and cathode material) used in SIBs. In detail, the electrochemical mechanisms, advantages and disadvantages, the relationship between crystalline structure and electrochemical performance and strategies to enhance the overall electrochemical performance of cobalt-based cathode and anode materials are discussed. Up to now, some cathode materials have already reached a high energy density, which is comparable to commercial LIBs. Furthermore, some cobalt-based materials can maintain a high Coulombic efficiency of over 99% with high reversible capacity during long cycling life. These encouraging results, allow such cobalt-based electrode materials to be a potential solution for grid-scale SIB systems

    Selective modes affect gene feature and function differentiation of tetraploid Brassica species in their evolution and domestication

    Get PDF
    The genus Brassica contains a diverse group of important vegetables and oilseed crops. Genome sequencing has been completed for the six species (B. rapa, B. oleracea, B. nigra, B. carinata, B. napus, and B. juncea) in U’s triangle model. The purpose of the study is to investigate whether positively and negatively selected genes (PSGs and NSGs) affect gene feature and function differentiation of Brassica tetraploids in their evolution and domestication. A total of 9,701 PSGs were found in the A, B and C subgenomes of the three tetraploids, of which, a higher number of PSGs were identified in the C subgenome as comparing to the A and B subgenomes. The PSGs of the three tetraploids had more tandem duplicated genes, higher single copy, lower multi-copy, shorter exon length and fewer exon number than the NSGs, suggesting that the selective modes affected the gene feature of Brassica tetraploids. The PSGs of all the three tetraploids enriched in a few common KEGG pathways relating to environmental adaption (such as Phenylpropanoid biosynthesis, Riboflavin metabolism, Isoflavonoid biosynthesis, Plant-pathogen interaction and Tropane, piperidine and pyridine alkaloid biosynthesis) and reproduction (Homologous recombination). Whereas, the NSGs of the three tetraploids significantly enriched in dozens of biologic processes and pathways without clear relationships with evolution. Moreover, the PSGs of B. carinata were found specifically enriched in lipid biosynthesis and metabolism which possibly contributed to the domestication of B. carinata as an oil crop. Our data suggest that selective modes affected the gene feature of Brassica tetraploids, and PSGs contributed in not only the evolution but also the domestication of Brassica tetraploids

    Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on alpha-Al2O3 tubes through covalent modification for hydrogen separation

    No full text
    Hydrogen has been regarded as the most promising clean and renewable energy. Beside the production of the hydrogen, the separation of hydrogen is also an import issue before it can be used in fuel cells. Membrane-based separation technologies have gained considerable attentions due to its high efficiency and low energy consumption. Zeolite imidazolate framework (ZIF) membranes have drawn intense interest due to their zeolite-like properties such as permanent porosity, uniform pore size and exceptional thermal and chemical stability. It is rather challenged to prepare well-intergrown Co-based zeolitic imidazolate frameworks (ZIFs) membranes on porous alpha-Al2O3 tubes since Co-based ZIFs prefer to form crystals in the synthesis solution rather than grow as membrane layer on the support surface. In this work, we report the preparation of high-quality ZIF-9 membrane with high H-2/CO2 selectivity and excellent thermal stability by using 3-aminopropyltriethoxysilane (APTES) as a covalent linker to modify the alpha-Al2O3 tube. Due to the formation of covalent bonds between APTES and ZIF-9, ZIF-9 nutrients are bound to the support surface, thus promoting the growth of dense and phase-pure ZIF-9 membrane with a thin thickness of about 4.0 mu m. The gas separation performances of the ZIF-9 membrane were evaluated by single gas permeation and mixture gas separation of H-2/CO2, H-2/N-2 and H-2/CH4, respectively. The mixture separation factors of H-2/CO2, H-2/CH4, and H-2/N-2 of the ZIF-9 membrane are 21.5, 8.2 and 14.7, respectively, which by far exceeds corresponding Knudsen coefficients. Moreover, the as-prepared ZIF-9 membrane exhibits excellent stability at a relatively broad range of operating temperature, which is beneficial for the industrial application of hydrogen separation or further membrane reactor. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved

    Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China

    No full text
    Eighteen strains of lactic acid bacteria were isolated from spontaneously fermented sour porridge with broomcorn millet in Northwestern Shanxi Province of China, and their probiotic characteristics were investigated in vitro. Survival rates under gastrointestinal conditions, cholesterol reduction, antibacterial capabilities, antioxidant activities, and safety assessments were examined. Results showed that five strains were selected as probiotics and identified as Levilactobacillusbrevis. Strain L10 exhibited excellent probiotic characteristics, with an 86% survival rate under pH 2.0 for 2 h, 80% survival rate in 0.3% bile salt for 6 h, the highest survival rate (78%) in simulated gastrointestinal juice for 3 h, the highest hydrophobicity (42% to xylene and 39% to hexadecane), the highest aggregation (39% auto-aggregation and 10.4–18.13% co-aggregation), relative higher cholesterol reduction rate (80%), the highest antibacterial activities, the highest antioxidant activity, sensitive to most antibiotics tested, without hemolytic and hydrolyze gelatinase activity and could not produce biogenic amine. Therefore, strain L10 could be applied to functional foods

    Microstructure and Mechanical Properties of Novel High-Strength, Low-Activation W<sub>x</sub>(TaVZr)<sub>100−x</sub> (x = 5, 10, 15, 20, 25) Refractory High Entropy Alloys

    No full text
    In this work, novel high-strength, low-activation Wx(TaVZr)100−x (x = 5, 10, 15, 20, 25) refractory high entropy alloys (RHEAs) were prepared by vacuum arc melting. Their microstructure, compressive mechanical properties, hardness, and fracture morphology were investigated and analyzed. The results show that the RHEAs possess a disordered BCC phase, ordered Laves phase, and Zr-rich HCP phase. Their dendrite structures were observed, and the distribution of dendrites became gradually more dense with an increase in W content. The RHEAs demonstrate high strength and hardness, with these properties being higher than in most reported tungsten-containing RHEAs. For example, the typical W20(TaVZr)80 RHEA has a yield strength of 1985 MPa and a hardness of 636 HV, respectively. The improvement in terms of strength and hardness are mainly due to solid solution strengthening and the increase in dendritic regions. During compression, with the increase in the applied load, the fracture behavior of RHEAs changed from initial intergranular fractures to a mixed mode combining both intergranular and transgranular fractures
    corecore