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Abstract: We first report that photoelectrochemical (PEC) performance of 

electrochemically hydrogenated TiO2 nanotube arrays (TNTAs) as high-efficiency 

photoanodes for solar water splitting could be well tuned by designing and adjusting the 

phase structure and composition of TNTAs. Among various TNTAs annealed at different 

temperature ranging from 300 to 700℃, well-crystallized single anatase (A) phase 

TNTAs-400 photoanode shows the best photoresponse properties and PEC performance 
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due to the favorable crystallinity, grain size and tubular structures. After electrochemical 

hydrogenation (EH), anatase-rutile (A-R) mixed phase EH-TNTAs-600 photoanode 

exhibits the highest photoactivity and PEC performance for solar water splitting. Under 

simulated solar illumination, EH-TNTAs-600 achieves the best photoconversion 

efficiency of upeixed phases and intentionally introduced Ti
3+

 (oxygen vacancies) which 

enhances the photoactivity over both UV and visible-light regions, and boosts both 

charge separation and transfer efficiencies. These findings provide new insight and 

guidelines for the construction of highly efficient TiO2-based devices for the application 

of solar water splitting. 

 

Keywords: TNTAs; Electrochemical hydrogenation; Phase; Photoelectrochemical; Hydrogen 

generation 

 

1. Introduction  

With the depletion and pollution of fossil fuel, extensive studies have been carried out 

for clean and renewable energy. Hydrogen fuel generated from the two most abundant 

and free resources on this planet, which are sunlight and water, has attracted much 

attention as a prospective alternative fuel as it is clean and has high energy density. Since 

the discovery of hydrogen generation through water splitting over a TiO2 photoanode in a 

photoelectrochemical (PEC) system by Fujishima and Honda [1], significant research 

[2-5] has been focusing on PEC water splitting using semiconductors as photoelectrode 

materials for converting solar energy into hydrogen energy. TiO2 was regarded as the 

most promising material for photocatalytic applications due to its low cost, nontoxicity, 

superior photoactivity and photochemical stability. In particular, in comparison with other 

randomly oriented TiO2 nanostructures, highly ordered anodic TiO2 nanotube arrays 

(TNTAs) with well-defined tubular structures hold great promise and excellent efficiency 

as photoelectrode materials in PEC system owing to their high-surface-area, direct 

http://dict.youdao.com/w/eng/photocatalysis%20water%20splitting/?spc=photocatalysis%20water%20splitting#keyfrom=dict.typo


  

 

pathway for electron transport, favorable reusability and facile fabrication [6-9]. 

Recently, hydrogenated TNTAs with intentionally introduced Ti
3+

 (oxygen vacancies) 

have been demonstrated to be a quite effective strategy for improving the electronic 

conductivity and photoresponse properties [6, 10-13]. Hydrogenation of TNTAs could be 

achieved via various methods such as hydrogen thermal treatment [14, 15], hydrogen 

plasma treatment [16, 17], electrochemical hydrogenation (EH) [18, 19] and chemical 

hydrogenation [20, 21]. Among various hydrogenation techniques, EH is a simple, 

low-cost and environment-friendly approach, overcoming the weakness of other 

hydrogenation methods such as high-energy consumption, expensive facility and 

complex process. Under an external electric field, hydrogen is driven into TiO2 lattice and 

reduces Ti
4+

 to Ti
3+

 (oxygen vacancies). For instance, Zhang et al. [19] demonstrated that 

electrochemical hydrogenated TNTAs photoelectrode showed remarkably improved and 

stable water splitting performance, and the optimized saturation photocurrent density and 

photoconversion efficiency under AM 1.5G illumination were identified to be 2.8 mA 

cm
-2

 at 1.23 V vs. RHE (RHE, reversible hydrogen electrode) and 1.27% respectively. 

Our previous work [22] proved that in contrast to the pristine TNTAs, EH process 

considerably enhanced the electrical properties and electrochemical performance of 

TNTAs, which enabled EH-TNTAs to serve as an ideal current collector for constructing 

TNTA-based electrodes applied for high performance supercapacitors. 

Moreover, TiO2 commonly exists in three phases: anatase (A, tetragonal), rutile (R, 

tetragonal), and brookite (B, orthorhombic). By far, A and R phases are the most common 

phases synthesized and widely studied for the application as photocatalyst due to their 

ease of synthesis. On the other hand, B-phase is rarely studied due to the difficulties in 

synthesizing and thermodynamically metastability under ambient conditions. Compared 

with single phase TiO2, mixed-phase TiO2 (A-R in particular) has proven to have higher 

photocatalytic activities [23-25]. Since photocatalytic activity is restricted by the fast 

electron-hole recombination, through coupling with another type of photoactive 

javascript:popupOBO('CHEBI:46748','B909930A','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=46748')


  

 

semiconductor material, charge transfer can occur, resulting in effective separation of 

photo-excited electrons from holes, and thus suppressing electron-hole recombination. A 

well-known example is commercial P25 powder with 75% A-phase and 25% R-phase. 

With illumination of UV-light on P25, photo-excited electrons from A-phase will be 

transferred to R-phase due to the lower conduction band energy of R-phase, and 

consequently inhibiting charge recombination. There has been some reported works 

regarding to whether & how the phase structure and composition affect the PEC 

performance of TiO2 materials [23, 25-27]. However, to date there has been no relevant 

reports exploring whether & how the phase structure and composition affect the 

photoresponse properties of TiO2 before and after EH treatment. 

In this work, TNTAs with different phase structure and composition were prepared via 

electrochemical anodization followed by annealing crystallization. Then, hydrogenation 

of TNTAs was conducted using EH technique. Our results indicated that EH treatment 

remarkably enhanced the PEC water splitting performance of TNTAs. Surprisingly, in 

contrast to the single A-phase TNTAs-400 with best PEC water splitting performance 

among all TNTAs electrodes before EH process, A-R mixed-phase EH-TNTAs-600 

showed the best PEC solar water splitting performance, well beyond that of other 

EH-TNTAs photoanodes. EH-TNTAs-600 achieves the best photoconversion efficiency 

of 1.52% and the highest H2 generation rate of 40.4 µmol h
-1

 cm
-2

. Further, the 

fundamental mechanism of phase-dependent improvement in PEC activity of EH-TNTAs 

photoelctrodes was fully explored. This work demonstrates that precisely designing and 

controlling the phase structure and composition of TNTAs could achieve maximum PEC 

performance of hydrogenated TNTAs, and thus provides theoretical insight and practical 

guidelines for the application of TiO2-based electrode in the PEC water splitting. 

 

2. Experimental 

2.1 Preparation of TNTAs 

http://dict.youdao.com/w/eng/photocatalysis%20water%20splitting/?spc=photocatalysis%20water%20splitting#keyfrom=dict.typo


  

 

Highly ordered and well-separated TNTAs were directly grown on a Ti foil (0.1 mm, 

99.7%) using electrochemical anodization. Prior to anodization, Ti foils were 

ultrasonically cleaned in acetone, ethanol, and deionized water, respectively, for 20 min. 

Electrochemical anodization was performed on a two-electrode setup using a 

direct-current (DC) power supply at 60 V for 6 h in ice bath. A Ti foil was used as the 

working electrode, a graphite foil as the cathode, a solution of 0.25 mol L
-1

 NH4F in 

ethylene glycol with 8 vol% H2O as the electrolyte. After anodization, the as-fabricated 

amorphous TNTAs were annealed in air at different temperature ranging from 300 to 700℃ 

for 2 h with a heating rate of 2 ℃ min
-1

. The as-prepared TNTAs sample was denoted as 

TNTAs-T (T refers to the annealing temperature). 

2.2 Electrochemical hydrogenation of TNTAs 

Electrochemical hydrogenation of TNTAs to obtain the EH-TNTAs was carried out in a 

two-electrode setup using a DC power supply at 4 V for 20 min at ambient temperature. 

The as-fabricated TNTAs-T was used as the cathode, a graphite foil as the anode, and an 

aqueous solution of 0.1 mol L
-1

 Na2SO4 as the electrolyte. Similarly, the resulting 

EH-TNTAs sample was denoted as EH-TNTAs-T. 

2.3 Characterization  

Morphologies and structure features of as-fabricated TNTAs samples were characterized 

using field-emission scanning electron microscope (FESEM, SU-8020, operated at 5.0 

kV), transmission electron microscope (TEM, JEM-2100F, operated at 200 kV), X-ray 

diffractometer (XRD, Rigaku D/Max-2500V) and Raman spectroscopy (LabRAM HR 

Evolution). X-ray photoelectron spectroscopy (XPS) analysis was conducted on an 

ESCALAB 250Xi spectrometer with monochromated Al Kα radiation (1,486.6 eV). The 

electron paramagnetic resonance (EPR) spectra were recorded at 100 K using a Bruker 

EMX plus/X-band spectrometer. UV-vis diffuse reflectance spectra (DRS) were measured 

on a Shimadzu UV-3600 UV-vis-NIR spectrophotometer using BaSO4 as a reference 

standard. 



  

 

2.4 Photoelectrochemical measurement 

All PEC measurements were carried out on an electrochemical workstation (CHI760E) in 

a three-electrode system using the tested sample, a Pt wire, an Ag/AgCl (3 mol L
-1

 KCl) 

electrode as the working, counter, and reference electrodes, respectively, and using 1 mol 

L
-1

 KOH aqueous solution as electrolyte. A 300 W xenon lamp (HSX-F300, NBeT 

Company) was utilized as the solar simulator (AM 1.5G, 100 mW cm
-2

). The transient 

photocurrent response was evaluated under chopped light irradiation at an applied 

potential of 0 V (vs. Ag/AgCl). The linear sweep voltammetry (LSV) was carried out 

from -1.0 to 0.6 V (vs. Ag/AgCl) at a scan rate of 10 mV s
-1

. The 

incident-photon-to-current-conversion efficiency (IPCE) was measured at an applied 

potential of 0 V (vs. Ag/AgCl) with the assistance of a motorized monochrometer. 

Electrochemical impedance spectroscopy (EIS) measurements were conducted in the 

frequency ranging from 100 mHz to 100 kHz at open-circuit potential with an amplitude 

of 5 mV. For the evaluation of charge separation (ηsep) and surface charge transfer (ηtrans) 

efficiencies, LSV was measured in 1 mol L
-1

 KOH electrolyte with 0.2 mol L
-1

 Na2SO3 as 

hole scavenger. 

PEC solar water splitting was carried out in an Ar gas flow system. The amounts of 

evolved gases were determined by gas chromatography (Agilent, GC-7890B, Ar carrier). 

A 300 W Xe-lamp was still utilized as the light source. The electrolyte was bubbled with 

Ar before measurements to remove dissolved O2. 

 

3. Results and discussion 

In order to identify the crystal structure and possible phase transition during annealing 

treatment and EH process, XRD spectra were first collected for both TNTAs fabricated at 

various annealing temperatures and their corresponding EH-TNTAs samples, as shown in 

Figs.1 and S1 (online). After subtracting the diffraction peaks from Ti foil, all diffraction 

peaks centered at 25.3°, 37.9°, 48.1° and 53.9° were observed in all TNTAs samples. 



  

 

These peaks are well indexed to (101), (004), (200), and (105) planes of tetragonal 

A-phase TiO2 (JCPDS No. 21-1272). Obviously, extra peaks at 27.3°, 36.5°, 41.4°, 44.2° 

and 54.5° appeared in the TNTAs-600 which could be ascribed to (110), (101), (111), 

(210) and (211) planes of tetragonal R-phase TiO2 (JCPDS No. 21-1276), and the 

R-phase intensity increases with further increase of annealing temperature up to 700℃. 

Even so, peaks of A-phase are still dominant over the peaks of R-phase. Above XRD 

analysis demonstrates that amorphous TiO2 transforms to pure A-phase upon thermal 

treatment at 500℃ or below, while TiO2 phase transformation occurs from A to R phase 

at 600℃ or above. Amorphous TNTAs highly crystallized into A-phase rather than 

R-phase even with the annealing temperature of up to 700℃. Besides, XRD patterns of 

both TNTAs and EH-TNTAs samples show almost the same diffraction patterns, which 

means no phase transformation occurs during EH process. 

 

Fig.1 (Color online) XRD patterns of various TNTAs samples with different annealing temperatures 

(from bottom to top: 300, 400, 500, 600, 700℃).  

 

Afterwards, Spurr and Scherrer equations [28] were utilized to calculate relative 

amounts of A and R phases as well as the mean crystallite sizes in various TNTAs 

samples based on the XRD data, as listed in Table S1 (online). Apparently, the average 

crystallite sizes of both A and R phases increase with the increase of crystallization 

temperature after the nucleation, mainly due to the higher energy to accelerate the growth 

of crystal grains. Moreover, as the crystallization temperature increased from 600 to 



  

 

700℃, the crystallite sizes of both A and R phases increased, and the mass fraction of 

R-phase dramatically increased from 10.7% to 34.2%. XRD results clearly illustrate that 

the phase structure and composition of TNTAs could be easily and precisely tuned by 

adjusting the crystallization parameters. 

The morphologies of both TNTAs and EH-TNTAs annealed from 300 to 700℃ are 

shown in Fig.2. The as-formed TiO2 NTs in all samples have a uniform diameter of ∼180 

nm, a wall thickness of ∼25 nm, and a length of ∼10 μm (Fig.S2 online). The distinct 

difference to the conventional TNTAs is that the TiO2 NTs are free-standing and 

well-separated from each other with intertube spaces ranging from 8 to 15 nm. The free 

spacing among the tubes allows for more exposed active surface as well as efficient mass 

transport. As for the TNTAs annealed at 300, 400 and 500℃ (Fig.2a-c), no great changes 

in the tubular structure and surface morphology of TiO2 NTs were observed, indicating 

the favorable thermal stability of TNTAs. When the temperature was raised up to 600℃ 

(Fig.2d), the tube walls became rough and began to rupture with tiny pores appearing in 

the tube walls, which could be clearly observed by TEM (Fig.3b). However, when the 

temperature was further increased up to 700℃ (Fig.2e), the tube walls began to collapse 

and the tubular structure was partially destroyed, which is attributed to the higher density 

of R-phase and extensive transformation from A to R phase as well as the rapid growth of 

R-phase grains at high temperature [29]. Moreover, EH-TNTAs samples (Fig.2f-j) 

display no distinct differences in tubular structure and surface morphology compared to 

their corresponding TNTAs counterparts. Notably, EH-TNTAs present a dark blue color 

versus the grey TNTAs due to the Ti
3+

 (oxygen vacancies) formation with an according 

change in the electronic and optical properties of the material. 



  

 

 

Fig. 2 FESEM images of various TNTAs (a-e) and EH-TNTAs (f-j) samples with different annealing 

temperatures (from top to bottom: 300, 400, 500, 600, 700℃) 

 

Fig. 3 (Color online) TEM images of TNTAs-400 (a) and TNTAs-600 (b). HRTEM images of 

TNTAs-400 (c), TNTAs-600 (d), EH-TNTAs-400 (e) and EH-TNTAs-600 (f). 

 



  

 

Since the following characterizations and measurements indicate that among various 

TNTAs and EH-TNTAs samples, TNTAs-400 and EH-TNTAs-600 exhibit the best 

photoactivity and PEC performance before and after EH treatment respectively. The 

microstructure features of these two samples are relatively typical and comparable. Thus, 

more attention will be focused on the two representative samples in the following 

discussion. 

Microstructures and morphologies of TNTAs-400 and EH-TNTAs-600 were further 

observed using TEM, as illustrated in Fig.3. Comparing to the smooth tube walls of 

TNTAs-400 (Fig.3a), tube walls of TNTAs-600 became rough, and large numbers of tiny 

pores marked with small boxes could be clearly observed in the walls (Fig.3b), which is 

in good agreement with SEM analysis. Well resolved lattice fringes of d = 3.45 and 1.648 

Å observed from TNTAs-400 (Fig.3c) are identified to be the (101) and (211) planes of 

A-phase TiO2. As for TNTAs-600 (Fig.3d), within tens of nanometers range, two 

neighboring and different lattice fringes of d = 3.45 and 3.24 Å correspond respectively 

to A-phase (101) and R-phase (110), clearly confirming the A-R mixed phase structure 

for TNTAs-600. Besides, after EH well-defined surface edges of TiO2 NTs become 

blurred (marked area with dotted lines in Fig.3e, f), which indicate the distortion of TiO2 

lattice structures induced by large numbers of surface introduced Ti
3+

 (oxygen vacancies). 

Thus, both SEM and TEM observations were in good accordance with former XRD 

results. 

XPS and Raman spectroscopy were conducted to reveal the variation of the chemical 

composition and coordination structure of TNTAs during annealing treatment and EH 

process, as clearly shown in Fig.4. Five Raman characteristic peaks at around 145.0, 

198.4, 397.3, 517.3 and 639.1 cm
−1

 in all TNTAs samples (Fig.4a) are assigned to the 

Eg(1), Eg(2), B1g, A1g/B2g and Eg(3) mode of A-phase TiO2 [30]. By comparison, two 

additional peaks at 445.3 and 613.2 cm
-1

 were observed for TNTAs-600 and became 

stronger for TNTAs-700, which are ascribed to the formation and growth of R-phase TiO2 



  

 

[31], well confirming the XRD results. Further, as the crystallization temperature 

increases from 300 to 700℃, the frequency of the strongest Eg(1) mode shifted from 

146.95 to 144.21 cm
-1

, and the Eg(1) peak intensity gradually increased (Fig.4a), which 

could be ascribed to the phonon dispersion away from the center of the brillouin zone and 

the growth in crystallite size [31, 32]. Compared to the TNTAs samples, a slight blueshift 

and broadening of the strongest Eg(1) peak are observed in the corresponding EH-TNTAs 

samples (Fig.4b), suggesting the increased surface disorder due to the intentionally 

introduced Ti
3+

 (oxygen vacancies) [33]. Fig.4c compares the normalized Ti 2p core level 

XPS spectra of TNTAs-400 (black curve) and EH-TNTAs-400 (red curve), together with 

their difference spectrum. Two peaks centered at 459.13 and 465.48 eV that correspond to 

the Ti 2p3/2 and Ti 2p1/2 peaks of Ti
4+

 in TiO2 are observed for both samples. In contrast to 

TNTAs-400, both Ti 2p1/2 and Ti 2p3/2 peaks for EH-TNTAs-400 exhibit a slight redshift, 

indicating that they have different bonding environments. By subtracting the normalized 

Ti 2p spectra of EH-TNTAs-400 with TNTAs-400, two extra peaks centered at 458.48 

and 463.78 eV are clearly observed. These two peaks are attributed to the characteristic 

Ti 2p3/2 and Ti 2p1/2 peaks of Ti
3+

, proving the generation of Ti
3+

 sites (oxygen vacancies) 

during EH process [34-36]. Similar result could be obtained from the Ti 2p XPS spectra 

for TNTAs-600 and EH-TNTAs-600 as well (Fig.4d). More importantly, the binding 

energy of both Ti 2p3/2 and Ti 2p1/2 for EH-TNTAs-600 are slightly lower than that of 

EH-TNTAs-400, and relative intensity of Ti
3+

 peaks for EH-TNTAs-600 is obviously 

higher than that of EH-TNTAs-400, revealing that more Ti
3+

 sites (oxygen vacancies) 

were introduced and stabilized in the EH-TNTAs-600 in contrast to EH-TNTAs-400. 



  

 

 

Fig. 4 Raman spectra of both TNTAs (a) and EH-TNTAs (b) with different annealing temperatures, 

insets are the magnification of Eg(1) peak. (c) Ti 2p XPS spectra of TNTAs-400 and EH-TNTAs-400. 

(d) Ti 2p XPS spectra of TNTAs-600 and EH-TNTAs-600. 

 

EPR is a sensitive and effective method for detecting Ti
3+

. In this work, EPR testing 

was conducted to support the formation of Ti
3+

 (oxygen vacancies) in EH-TNTAs 

samples. Fig.5 compares the EPR spectra of EH-TNTAs-400, EH-TNTAs-600 as well as 

their unhydrogenated counterparts, TNTAs-400 and TNTAs-600. As can be clearly seen, 

TNTAs-400 and TNTAs-600 do not show any paramagnetic signal, whereas both 

EH-TNTAs-400 and EH-TNTAs-600 exhibit a strong EPR signal at g ≈ 1.94, which can 

be assigned to the paramagnetic Ti
3+

 species [37]. More significantly, the signal intensity 

of Ti
3+

 for EH-TNTAs-600 is apparently higher than that of EH-TNTAs-400, suggesting 

that more Ti
3+

 centers are created and stabilized in the A-R mixed phase EH-TNTAs-600 

in comparison to single A-phase EH-TNTAs-400. This is in good agreement with the 

result of XPS analysis. Moreover, both EH-TNTAs-400 and EH-TNTAs-600 also present 

a paramagnetic signal at g ≈ 2.001 for oxygen vacancies, proving the presence of oxygen 



  

 

vacancies associated with surface Ti
3+ 

[38]. It is accepted that the surface Ti
3+

 centers can 

trap atmospheric O2 to generate ·O2
−
 with an EPR signal at g ≈ 2.02 [39]. Thus, EPR data 

confirm that Ti
3+

 (oxygen vacancies) is created during EH process and exists both in the 

bulk and on the surface. 

 

Fig. 5 (Color online) EPR spectra for TNTAs-400, TNTAs-600, EH-TNTAs-400 and EH-TNTAs-600. 

 

To investigate photoresponse properties of various TNTAs electrodes, the PEC 

measurement was carried out in a three-electrode cell under illumination in 1 mol L
-1

 

KOH electrolyte. The plots of transient photocurrent response vs. time for various TNTAs 

and EH-TNTAs electrodes under simulated solar illumination (100 mW cm
-2

) are shown 

in Fig.6a, b respectively. All TNTAs show good photoresponses under conditions of light 

on-off cycles, which indicates the rapid charge transportation process from the walls of 

TiO2 NTs to Ti substrate. Without illumination, the current values are almost zero while 

the photocurrents rapidly rise to a stable value upon illumination, which are reproducible 

for several on-off cycles. The observed photocurrents are derived from the photo-excited 

electrons of TNTAs photoanodes. Among various TNTAs electrodes (Fig.6a), 

photocurrent first rises and then falls with increase of annealing temperature, and 

well-crystallized single A-phase TNTAs-400 yields the highest photocurrent density of 

1.48 mA cm
-2

 due to the favorable crystallization, grain size and tubular structures. With 

further increase of temperature, the photocurrent gradually decreases owing to the grain 



  

 

growth, decrease of A-phase fraction caused by A-to-R phase transformation and the 

destruction of tubular structures. Transient photocurrent responses of various TNTAs 

electrodes demonstrate that phase structures and crystallization can remarkably affect the 

photoresponse properties of TNTAs. After EH process, as can be seen in Fig.6b, the 

photocurrents of EH-TNTAs electrodes are distinctly higher than their corresponding 

TNTAs electrodes. Besides, the photocurrents of EH-TNTAs rise with increase of 

annealing temperature, only the photocurrent of EH-TNTAs-700 slightly decreases, and 

thereby the mixed phase EH-TNTAs-600 yields the highest photocurrent density of 2.74 

mA cm
-2

, well beyond that of other EH-TNTAs electrodes. Transient photocurrent 

responses of various TNTAs electrodes reveal that EH can significantly enhance the 

photoresponse properties of TNTAs by the introduction of substantial Ti
3+

 (oxygen 

vacancies). However, the improvement extent varies greatly with the phase structures and 

crystallization of TNTAs, and the improvement for A-R mixed phase EH-TNTAs-600 

before and after EH treatment is maximum (Fig.S3 online).  

 

Fig.6 Transient photocurrent responses (a, b), linear sweep voltammograms (c, d) and 

photoconversion efficiencies (e, f) of various TNTAs and EH-TNTAs under simulated solar 

illumination (100 mW cm
-2

). 

 

Additionally, transient photocurrent responses of various TNTAs electrodes under 

visible-light illumination were further conducted, as shown in Fig.S4 (online). Overall, 



  

 

the photocurrents of EH-TNTAs are greater than that of their corresponding TNTAs 

electrodes, but the photocurrents for all TNTAs electrodes under visible-light illumination 

are much lower than their respective photocurrents obtained under simulated solar light 

illumination, and thus could be almost negligible. UV-vis DRS measurements also 

confirm that all TNTAs and EH-TNTAs samples exhibit strong absorption in UV light 

region (Fig.S5a (online) and Fig. 5b). No significant absorption could be detected in 

visible-light region due to the intrinsic wide band gap of TiO2 (3.20 eV). And for 

TNTAs-600, TNTAs-700 and their counterparts EH-TNTAs-600 and EH-TNTAs-700, 

obvious absorption in visible-light region can be clearly observed owing to A-to-R phase 

transformation and increase of R-phase fraction. Thus, photocurrent responses for all 

TNTAs and EH-TNTAs electrodes under visible light illumination are relatively weak. 

Further comparison between individual TNTAs and its corresponding EH-TNTAs 

(Fig.S5c-e (online) and Fig.7) clearly indicates that the intentionally introduced Ti
3+

 

(oxygen vacancies) during the EH process indeed has an impact on the optical properties 

of TiO2 nanotubes. In contrast to pristine TNTAs, the absorption edge of its 

corresponding EH-TNTAs exhibits an obvious red-shift, and thus contributing to higher 

photocurrent responses for EH-TNTAs with visible-light illumination.  

 

Fig.7 UV-vis diffuse reflectance spectra of TNTAs-400, TNTAs-600, EH-TNTAs-400 and EH-TNTAs-600. 

 



  

 

Then, LSV curves of all TNTAs photoanodes (Fig.6c, d) were measured at 10 mV·s
-1

 

from -1.0 to 0.6 V (vs. Ag/AgCl), and their corresponding photoconversion efficiencies η 

(Fig.6e, f) were calculated via the equation (1) [40]:  

100%×][=(%)
0

app

0

rev

p I

EE
jη

∣∣-

,    (1) 

where jp is the photocurrent density (mA cm
-2

), I0 is the power density of incident light 

(mW cm
-2

), E
0

rev is the standard reversible potential of 1.23 V (vs. NHE), and applied 

bias potential Eapp=Emeas-Eaoc, where Emeas is the electrode potential (vs. Ag/AgCl) of 

working electrode at which photocurrent was measured under illumination, and Eaoc is 

electrode potential (vs. Ag/AgCl) of working electrode under open circuit condition when 

the photocurrent becomes zero. Before EH treatment, well-crystallized single A-phase 

TNTAs-400 yields the highest photoconversion efficiency of 0.98% at -0.47 V (vs. 

Ag/AgCl). While after EH process, A-R mixed phase EH-TNTAs-600 could achieve the 

best photoconversion efficiency of up to 1.52% at -0.42 V (vs. Ag/AgCl), which is 

substantially higher than EH-TNTAs-400. Besides, the photoconversion efficiencies of 

EH-TNTAs are remarkably enhanced in comparison to that of their corresponding 

TNTAs photoelectrodes. 

IPCE provides a reliable technique to evaluate the wavelength dependent 

photoresponse of photoelectrodes. IPCE can be expressed using the following equation 

[41]:  

light
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IPCE

J

I




,    (2)

 

Where λ is the incident light wavelength, I and Jlight is photocurrent density and incident 

light irradiance at a specific wavelength, respectively. In comparison to the TNTAs 

annealed at 400 and 600℃, the corresponding EH-TNTAs-400 and EH-TNTAs-600 

exhibit significantly enhanced photoactivity over the entire UV region (Fig.8a), which 

implies that the photogenerated carriers are more efficiently separated and transported in 



  

 

the EH-TNTAs than in the pristine TNTAs. Further, A-R mixed phase EH-TNTAs-600 

exhibits the highest IPCE value of around 90% in full UV region with a maximum value 

of 92% at 360 nm, and presents photoactivity enhancement within the visible-light region 

(400-500 nm) as well. This is ascribed to the synergy of R-phase (Eg=3.0 eV) formation 

and Ti
3+

 (oxygen vacancies) generation during EH process, and in good agreement with 

the extended absorption in the DRS spectra and the increased visible-light photocurrent. 

To gain deeper insight into the charge transfer properties associated with photoelectrodes, 

EIS measurements were subsequently performed at open circuit potential with amplitude 

of 5 mV under illumination. Figs.8b and S6 (online) illustrate the Nyquist plots of tested 

TNTAs and EH-TNTAs photoelectrodes. For quantitative analysis, experimental data of 

impedance spectra were fitted to the model depicted by the equivalent circuit (insets in 

Fig. 8b). In this model, Rs is the solution resistance, Rct and Rc represent the inherent 

resistance of the working electrode and charge transfer resistance through the electrolyte 

respectively, the constant phase elements (CPE1 and CPE2) refer to the real double-layer 

capacitance. Table S2 (online) lists the fitted parameter values for various TNTAs and 

EH-TNTAs electrodes. It is obvious that EH-TNTAs show much lower impedance values 

than the corresponding TNTAs electrodes. This evident decline in the resistance of 

EH-TNTAs electrodes can be attributed to the greatly improved conductivity of electrode 

and efficient charge transport induced by the introduction of large numbers of Ti
3+

 

(oxygen vacancies) during the EH process. Among various TNTAs electrodes, 

well-crystallized single A-phase TNTAs-400 has the lowest Rct of 10.71 Ω. This reveals 

that favorable crystallization, grain size and tubular structures enable high charge transfer 

ability and conductivity, and thus contribute to the enhancement in photocurrent. After 

EH process, EH-TNTAs-600 yields the lowest Rct of 4.17 Ω, much lower than that of 

other EH-TNTAs electrodes, which indicates that synergy of A-R mixed phases and 

introduction of oxygen vacancies greatly reduce the charge transfer resistance and 



  

 

facilitate the charge carrier transport, and consequently boost the photocurrent 

significantly. 

 

Fig. 8 (Color online) IPCE spectra (a), Nyquist plots (b), charge separation (ηsep) (c) and surface 

charge transfer (ηtrans) (d) efficiencies of TNTAs-400, TNTAs-600, EH-TNTAs-400 and 

EH-TNTAs-600 photoelectrodes. The insets are the magnified view of IPCE spectra in visible-light 

region, equivalent circuit, charge separation and surface charge transfer efficiencies at 0 V (vs. 

Ag/AgCl), respectively. 

 

To further explore the fundamental mechanism of phase-dependent improvement in 

PEC activity of EH-TNTAs photoelctrodes, charge separation (ηsep) and surface charge 

transfer (ηtrans) efficiencies were investigated using Na2SO3 as the hole scavenger [42], as 

shown in Fig.8c, d. With the assumption that ηtrans is 100% with Na2SO3 in the electrolyte 

[43], the ηtrans could be estimated by calculating the photocurrent ratio measured 

without/with Na2SO3. Similarly, the ηsep can be estimated by dividing the photocurrent 

density with unity converted photocurrent densities (Jabs). Jabs can be calculated by 

integrating the corresponding UV-vis DRS curves (Fig.S5 online) with the standard solar 

spectrum (Fig.S7 online). Detailed calculation, Jabs (Fig.S8 online) and LSV curves 

(Fig.S9 online) of TNTAs-400, TNTAs-600 and their corresponding EH-TNTAs-400 and 



  

 

EH-TNTAs-600 photoanodes measured with presence of Na2SO3 can be found in 

supporting information (online). Obviously, EH-TNTAs-400 and EH-TNTAs-600 exhibit 

much higher ηsep and ηtrans than their corresponding TNTAs photoanodes, indicating that 

EH treatment significantly enhances not only surface charge transfer but also charge 

separation. Especially, A-R mixed phase EH-TNTAs-600 brings out the maximum 

improvement with ηsep and ηtrans, which contribute to its best photoactivity and PEC 

performance. 

Figs.9a and S10 (online) compare the PEC H2 generation rate of various TNTAs and 

EH-TNTAs photoanodes. It is evident that EH significantly enhances the H2 generation 

rate of TNTAs, and the extent of enhancement varies with the phase structure and 

crystallization of TNTAs. Among all EH-TNTAs photoanodes, EH-TNTAs-600 achieves 

the highest H2 generation rate of 40.4 µmol h
-1

 cm
-2

. The results of PEC H2 generation 

measurements well match that of above photocurrent response tests. Moreover, the 

photocurrent densities of TNTAs-400 and TNTAs-600 as well as their corresponding 

EH-TNTAs photoanodes (Fig.9b) remain constant over 4 h illumination, revealing the 

prominent stability of TNTAs photoanode for H2 generation by solar water splitting. 

 

Fig. 9 Measured H2 generation (a) and  photocurrent-time profiles (b) as a function of time for 

TNTAs-400, TNTAs-600, EH-TNTAs-400 and EH-TNTAs-600 electrodes at 0 V vs. Ag/AgCl, in a 1 

mol L
-1

 KOH solution under 100 mW cm
-2

 illumination. 

 

4. Conclusions 



  

 

In summary, this work first demonstrates that the PEC performance of 

electrochemical hydrogenated TNTAs for solar water splitting could be well tuned by 

designing and adjusting the phase structure and composition of TNTAs. Among various 

TNTAs annealed at different temperature ranging from 300 to 700℃, well-crystallized 

single A-phase TNTAs-400 photoanode shows the best photoresponse properties and 

PEC performance due to the favorable crystallinity and tubular structures. After EH 

treatment, A-R mixed phase EH-TNTAs-600 photoanode exhibits the highest 

photoactivity and PEC performance for solar water splitting, well beyond that of other 

EH-TNTAs photoanodes. This could be ascribed to the synergy of A-R mixed phases and 

intentionally introduced Ti
3+

 (oxygen vacancies) which enhances the photoactivity in 

both UV and visible-light regions and boosts charge separation and transfer efficiencies, 

thereby enabling remarkably enhanced PEC water splitting performance. This work has 

great theoretical and practical significance for designing and fabricating the TiO2-based 

photoelectrodes in application of PEC solar water splitting. 
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