102 research outputs found

    Learning Cross-domain Semantic-Visual Relation for Transductive Zero-Shot Learning

    Full text link
    Zero-Shot Learning (ZSL) aims to learn recognition models for recognizing new classes without labeled data. In this work, we propose a novel approach dubbed Transferrable Semantic-Visual Relation (TSVR) to facilitate the cross-category transfer in transductive ZSL. Our approach draws on an intriguing insight connecting two challenging problems, i.e. domain adaptation and zero-shot learning. Domain adaptation aims to transfer knowledge across two different domains (i.e., source domain and target domain) that share the identical task/label space. For ZSL, the source and target domains have different tasks/label spaces. Hence, ZSL is usually considered as a more difficult transfer setting compared with domain adaptation. Although the existing ZSL approaches use semantic attributes of categories to bridge the source and target domains, their performances are far from satisfactory due to the large domain gap between different categories. In contrast, our method directly transforms ZSL into a domain adaptation task through redrawing ZSL as predicting the similarity/dissimilarity labels for the pairs of semantic attributes and visual features. For this redrawn domain adaptation problem, we propose to use a domain-specific batch normalization component to reduce the domain discrepancy of semantic-visual pairs. Experimental results over diverse ZSL benchmarks clearly demonstrate the superiority of our method

    Cross-Domain Depth Estimation Network for 3D Vessel Reconstruction in OCT Angiography

    Get PDF
    Optical Coherence Tomography Angiography (OCTA) has been widely used by ophthalmologists for decision-making due to its superiority in providing caplillary details. Many of the OCTA imaging devices used in clinic provide high-quality 2D en face representations, while their 3D data quality are largely limited by low signal-to-noise ratio and strong projection artifacts, which restrict the performance of depth-resolved 3D analysis. In this paper, we propose a novel 2D-to-3D vessel reconstruction framework based on the 2D en face OCTA images. This framework takes advantage of the detailed 2D OCTA depth map for prediction and thus does not rely on any 3D volumetric data. Based on the data with available vessel depth labels, we first introduce a network with structure constraint blocks to estimate the depth map of blood vessels in other cross-domain en face OCTA data with unavailable labels. Afterwards, a depth adversarial adaptation module is proposed for better unsupervised cross-domain training, since images captured using different devices may suffer from varying image contrast and noise levels. Finally, vessels are reconstructed in 3D space by utilizing the estimated depth map and 2D vascular information. Experimental results demonstrate the effectiveness of our method and its potential to guide subsequent vascular analysis in 3D domain

    From Static to Dynamic Structures: Improving Binding Affinity Prediction with a Graph-Based Deep Learning Model

    Full text link
    Accurate prediction of the protein-ligand binding affinities is an essential challenge in the structure-based drug design. Despite recent advance in data-driven methods in affinity prediction, their accuracy is still limited, partially because they only take advantage of static crystal structures while the actual binding affinities are generally depicted by the thermodynamic ensembles between proteins and ligands. One effective way to approximate such a thermodynamic ensemble is to use molecular dynamics (MD) simulation. Here, we curated an MD dataset containing 3,218 different protein-ligand complexes, and further developed Dynaformer, which is a graph-based deep learning model. Dynaformer was able to accurately predict the binding affinities by learning the geometric characteristics of the protein-ligand interactions from the MD trajectories. In silico experiments demonstrated that our model exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset, outperforming the methods hitherto reported. Moreover, we performed a virtual screening on the heat shock protein 90 (HSP90) using Dynaformer that identified 20 candidates and further experimentally validated their binding affinities. We demonstrated that our approach is more efficient, which can identify 12 hit compounds (two were in the submicromolar range), including several newly discovered scaffolds. We anticipate this new synergy between large-scale MD datasets and deep learning models will provide a new route toward accelerating the early drug discovery process.Comment: totally reorganize the texts and figure

    The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2

    Full text link
    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 ±\pm 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 ×\times 1.95 km) ±\pm10%\%, respectively, and the direction of the +zz axis is estimated to be (250±\pm5∘^\circ, 63±\pm5∘^\circ) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.Comment: 21 pages, 3 figures, 1 tabl

    3D VESSEL RECONSTRUCTION IN OCT-ANGIOGRAPHY VIA DEPTH MAP ESTIMATION

    Get PDF
    Optical Coherence Tomography Angiography (OCTA) has been increasingly used in the management of eye and systemic diseases in recent years. Manual or automatic analysis of blood vessel in 2D OCTA images (en face angiograms) is commonly used in clinical practice, however it may lose rich 3D spatial distribution information of blood vessels or capillaries that are useful for clinical decision-making. In this paper, we introduce a novel 3D vessel reconstruction framework based on the estimation of vessel depth maps from OCTA images. First, we design a network with structural constraints to predict the depth of blood vessels in OCTA images. In order to promote the accuracy of the predicted depth map at both the overall structure- and pixel- level, we combine MSE and SSIM loss as the training loss function. Finally, the 3D vessel reconstruction is achieved by utilizing the estimated depth map and 2D vessel segmentation results. Experimental results demonstrate that our method is effective in the depth prediction and 3D vessel reconstruction for OCTA images.% results may be used to guide subsequent vascular analysi

    Observation of nonrelativistic plaid-like spin splitting in a noncoplanar antiferromagnet

    Full text link
    Spatial, momentum and energy separation of electronic spins in condensed matter systems guides the development of novel devices where spin-polarized current is generated and manipulated. Recent attention on a set of previously overlooked symmetry operations in magnetic materials leads to the emergence of a new type of spin splitting besides the well-studied Zeeman, Rashba and Dresselhaus effects, enabling giant and momentum dependent spin polarization of energy bands on selected antiferromagnets independent of relativistic spin-orbit interaction. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here, we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet MnTe2_2, the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, stems from the intrinsic antiferromagnetic order instead of the relativistic spin-orbit coupling. Our finding demonstrates a new type of spin-momentum locking with a nonrelativistic origin, placing antiferromagnetic spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.Comment: Version 2, 30 pages, 4 main figures and 8 supporting figure

    Crowdsourced mapping of unexplored target space of kinase inhibitors

    Get PDF
    Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts

    Protection of Intellectual Property in the P.R.C.: Progress, Problems, and Proposals

    No full text
    • …
    corecore