193 research outputs found

    The Growth And Impact Of Telemedicine Services:Evidence From The Minnesota All Payer Claims Database

    Get PDF
    University of Minnesota Ph.D. dissertation.July 2019. Major: Health Services Research, Policy and Administration. Advisors: Jean Abraham, Peter Huckfeldt. 1 computer file (PDF); viii, 144 pages.Telemedicine, the use of telecommunications technology to remotely diagnose and treat patients, has the potential to address provider shortages and improve access to care for patients, and lower health care costs and expenditures across public and private coverage populations. Recent federal and state legislation expanding coverage and increasing provider reimbursement for telemedicine services, combined with investments in telemedicine technologies by public and private entities, have led to expansions in the use of telemedicine services. However, work to date has focused on telemedicine use for a single insurer and has mostly estimated cross-sectional comparisons of health care use and outcomes between telemedicine users and non-users. This dissertation expands upon prior empirical research investigating telemedicine by characterizing the growth in different types of telemedicine services in Minnesota. By using the Minnesota All Payer Claims Database (MN APCD), I examine various covered populations, and investigate how insurance coverage expansions and state policies affected telemedicine use and their impacts on patient outcomes

    An edge-directed interpolation method for fetal spine MR images

    Get PDF
    Abstract Background Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution. High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. Method In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). Results All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains better consistency in edge structures with the original images. Conclusions The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts

    Impact of spatial resolution on air quality simulation: A case study in a highly industrialized area in Shanghai, China

    Get PDF
    AbstractThe air pollution contribution from highly industrialized areas has been a prominent issue in regional air quality control. Particular emphasis on local industrial emissions is necessary to understand the complexity of air pollution over highly industrialized areas. Baoshan District, one of the most important industrialized areas in China and the most competitive steel and iron production base worldwide, was selected as the study area in this work. The WRF/CMAQ modeling system with local emission profile was applied to study the impact of spatial resolution on air quality modeling. The simulation results for SO2, NO, NO2, CO and PM10 at both 3–km and 1–km resolutions were verified by ground level observations. The results showed that the allocation of the emission inventory is improved by using finer resolution grids, which allow the consideration of detailed emission features. The influence of model resolution was more significant for air quality than for meteorology simulation. The relative errors using the finer resolution method ranged from –25% to 59%, an obvious improvement over the error value of 26%–245% obtained using the coarse resolution method. The changing tendencies of air pollutants in urban and rural areas were generally better modeled at finer than coarser resolution. However, the detailed variation in the most heavily polluted areas was still difficult to capture, and the model performance was not evidently improved by the use of a fine resolution. To improve the model performance over highly industrialized areas for future studies, combining the dynamic emission profile with detailed industrial activities and accurate local meteorological fields is suggested

    Cells derived from iPSC can be immunogenic — Yes or No?

    Get PDF
    The induced pluripotent stem cells (iPSCs), derived by ectopic expression of reprogramming factors in somatic cells, can potentially provide unlimited autologous cells for regenerative medicine. In theory, the autologous cells derived from patient iPSCs should be immune tolerant by the host without any immune rejections. However, our recent studies have found that even syngeneic iPSC-derived cells can be immunogenic in syngeneic hosts by using a teratoma transplantation model (Nature 474:212–215, 2011). Recently two research groups differentiated the iPSCs into different germ layers or cells, transplanted those cells to the syngeneic hosts, and evaluated the immunogenicity of those cells. Both of the two studies support our conclusions that some certain but not all tissues derived from iPSCs can be immunogenic, although they claimed either “negligible” or “lack of” immunogenicity in iPSC derivatives (Nature 494:100–104, 2013; Cell Stem Cell 12:407–412, 2013). To test the immunogenicity of clinically valuable cells differentiated from human iPSCs are emergently required for translation of iPSC technology to clinics

    A comparison of the burden of knee osteoarthritis attributable to high body mass index in China and globally from 1990 to 2019

    Get PDF
    BackgroundExcess body mass index (BMI) plays a key role in the onset and progression of knee osteoarthritis (knee OA). However, the burden of knee OA attributable to high BMI at the global, Chinese, and regional levels have received far too little attention. The aim of this study is to provide evidence to support the design of policy by investigating long-term trends of years lived with disability (YLDs) for knee OA.MethodsTo illustrate the trends of YLDs for knee OA attributable to high BMI and the temporal trends of the YLDs rate by age, period, and cohort, Joinpoint regression software and age-period-cohort (APC) were used to analyze the YLDs data of knee OA from the Global Burden of Disease (GBD) 2019.ResultsIn China, there were 549,963.5 YLDs for knee OA attributable to high BMI in 2019, which had increased by 460.7% since 1990. From 1990 to 2019, age-standardized disability-adjusted life year rate (ASDR) of knee OA attributable to high BMI trended upwards. The average annual percent change (AAPC) of knee OA attributable to high BMI in China and globe were 3.019, 1.419%, respectively. The longitudinal age curve of the APC model showed that the YLDs rates of knee OA due to high BMI increased with age, and YLDs rates were higher among females than males. The period rate ratios (RRs) of knee OA due to high BMI increased significantly. The cohort RRs of knee OA due to high BMI increased among those born between 1900 and 1970. The net drifts of knee OA attributable to high BMI in China and globe were above 1. Compared with global condition, the net drift values of knee OA attributable to high BMI in China was higher. Compared with females, males had higher net drift value. Countries with high socio-demographic index (SDI) have a much higher burden of knee OA caused by high BMI than countries with low SDI.ConclusionIn China, high BMI is a substantial cause of knee OA, the incidence of which has been increasing since 1990. In addition, women and the elderly are more vulnerable to knee OA caused by high BMI. The Chinese government must take the long-term impact of high BMI on knee OA into account and implement effective public health policies and resort to interventions to reduce the burden as soon as possible

    Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer

    Get PDF
    Ovarian cancer (OV) is the most lethal form of gynecological malignancy worldwide, with limited therapeutic options and high recurrence rates. However, research focusing on prognostic patterns of ferroptosis-related genes (FRGs) in ovarian cancer is still lacking. From the 6,406 differentially expressed genes (DEGs) between TCGA-OV (n = 376) and GTEx cohort (n = 180), we identified 63 potential ferroptosis-related genes. Through the LASSO-penalized Cox analysis, 3 prognostic genes, SLC7A11, ZFP36, and TTBK2, were finally distinguished. The time-dependent ROC curves and K-M survival analysis performed powerful prognostic ability of the 3-gene signature. Stepwise, we constructed and validated the nomogram based on the 3-gene signature and clinical features, with promising prognostic value in both TCGA (p-value < .0001) and ICGC cohort (p-value = .0064). Gene Set Enrichment Analysis elucidated several potential pathways between the groups stratified by 3-gene signature, while the m6A gene analysis implied higher m6A level in the high-risk group. We applied the CIBERSORT algorithm to distinct tumor immune microenvironment between two groups, with less activated dendritic cells (DCs) and plasma cells, more M0 macrophages infiltration, and higher expression of key immune checkpoint molecules (CD274, CTLA4, HAVCR2, and PDCD1LG2) in the high-risk group. In addition, the low-risk group exhibited more favorable immunotherapy and chemotherapy responses. Collectively, our findings provided new prospects in the role of ferroptosis-related genes, as a promising prediction tool for prognosis and immune responses, in order to assist personalized treatment decision-making among ovarian cancer patients

    Liver lobe-based magnetic resonance diffusion-weighted imaging using multiple b values in patients with hepatitis B-related liver cirrhosis: association with the liver disease severity according to the Child-Pugh class

    Get PDF
    OBJECTIVE: To determine the associations of liver lobe-based magnetic resonance diffusion-weighted imaging findings using multiple b values with the presence and Child-Pugh class of cirrhosis in patients with hepatitis B. METHODS: Seventy-four cirrhotic patients with hepatitis B and 25 healthy volunteers underwent diffusion-weighted imaging using b values of 0, 500, 800 and 1000 sec/mm2. The apparent diffusion coefficients of individual liver lobes for b(0,500), b(0,800) and b(0,1000) were derived from the signal intensity averaged across images obtained using b values of 0 and 500 sec/mm2, 0 and 800 sec/mm2, or 0 and 1000 sec/mm2, respectively, and were statistically analyzed to evaluate cirrhosis. RESULTS: The apparent diffusion coefficients for b(0,500), b(0,800) and b(0,1000) inversely correlated with the Child-Pugh class in the left lateral liver lobe, the left medial liver lobe, the right liver lobe and the caudate lobe (r=-0.35 to -0.60, all p;0.05). Among these parameters, the apparent diffusion coefficient for b(0,500) in the left lateral liver lobe best differentiated normal from cirrhotic liver, with an area under the receiver operating characteristic curve of 0.989. The apparent diffusion coefficient for b(0,800) in the right liver lobe best distinguished Child-Pugh class A from B-C and A-B from C, with areas under the receiver operating characteristic curve of 0.732 and 0.747, respectively. CONCLUSION: Liver lobe-based apparent diffusion coefficients for b(0,500) and b(0,800) appear to be associated with the presence and Child-Pugh class of liver cirrhosis

    Improvement of Antioxidant Activity of Defatted Selenium-Enriched Rice Bran by Lactic Acid Bacteria Fermentation

    Get PDF
    Selenium-enriched rice bran is a major by-product in the production of selenium-enriched polished rice, which is rich in selenium, dietary fiber, and active substances such as phenolic compounds. However, the high-value utilization of selenium-enriched rice bran has not been fully explored. In this study, four strains of lactic acid bacteria (Lactobacillus acidophilus, Streptococcus thermophilus, L. plantarum, and L. delbrueckii subsp.) were used to ferment defatted selenium-enriched rice bran. The physicochemical properties, nutritional characteristics, microstructure, physicochemical properties and antioxidant activity of selenium-enriched rice bran were compared before and after fermentation. The results showed that lactic acid bacteria fermentation increased the insoluble dietary fiber/water-soluble dietary fiber ratio in selenium-enriched rice bran by 20%–45%, the contents of total phenols and total flavonoids by 5%–6% and 16%–31%, respectively, and the conversion efficiency of inorganic selenium to SeCys2 by 42%–49%. Moreover, the fermentation reduced the particle size of selenium-enriched rice bran, made the surface more loose and porous, and enhanced the hydration properties, cholesterol adsorption capacity and antioxidant activity. The decreasing order of the comprehensive scores of fermented selenium-enriched rice bran in principal component analysis (PCA) was L. plantarum > L. delbrueckii subsp. > S. thermophilus > L. acidophilus. Among these samples, the sample fermented with L. plantarum exhibited the strongest antioxidant activity in vitro, as well as the highest contents of total acid, SeCys2, total phenols and total flavonoids. This study provides a theoretical basis for the intensive development and utilization of selenium-enriched rice bran
    • …
    corecore