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ABSTRACT
The air pollution contribution from highly industrialized areas has been a prominent issue in regional air quality
control. Particular emphasis on local industrial emissions is necessary to understand the complexity of air pollution
over highly industrialized areas. Baoshan District, one of the most important industrialized areas in China and the most
competitive steel and iron production base worldwide, was selected as the study area in this work. The WRF/CMAQ
modeling system with local emission profile was applied to study the impact of spatial resolution on air quality
modeling. The simulation results for SO2, NO, NO2, CO and PM10 at both 3–km and 1–km resolutions were verified by
ground level observations. The results showed that the allocation of the emission inventory is improved by using finer
resolution grids, which allow the consideration of detailed emission features. The influence of model resolution was
more significant for air quality than for meteorology simulation. The relative errors using the finer resolution method
ranged from –25% to 59%, an obvious improvement over the error value of 26%–245% obtained using the coarse
resolution method. The changing tendencies of air pollutants in urban and rural areas were generally better modeled
at finer than coarser resolution. However, the detailed variation in the most heavily polluted areas was still difficult to
capture, and the model performance was not evidently improved by the use of a fine resolution. To improve the
model performance over highly industrialized areas for future studies, combining the dynamic emission profile with
detailed industrial activities and accurate local meteorological fields is suggested.
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1. Introduction

Beginning in 2002, heavy industry has led a boom in the new,
revived Chinese economy. However, the number of air pollution
episodes has increased simultaneously, mainly in China’s mega
cities (Chan and Yao, 2008). Highly industrialized areas play very
important roles in regional air pollution control. In some previous
studies, the pollution status in highly industrialized areas (Tsai et
al., 2007; Figueiredo et al., 2013; Tan et al., 2014) and the chemical
composition of the pollution (Yi and Prybutok, 1996; Cincinelli et
al., 2003; Querol et al., 2006; Minguillon et al., 2007; Huang et al.,
2013) have been investigated. However, most of the studies
focused on the analysis of field–monitored data. Further investiga
tion with modeling applications is called for better understanding
the importance of local emissions in the air pollution over
industrialized areas (Figueiredo et al., 2013).

Previous air quality simulation works have shown that
industry–intensive areas are weak points for air quality simulation.
Wang et al. (2011) developed an integrated emission inventory for
China and verified the CMAQ simulation results with observed
data. The results suggested an overestimation for SO2 and under
estimation for PM10 in some industry–intensive areas because of
the inaccurate allocation of emissions. An et al. (2013) verified the
INTEX–2006 emission inventory using observation data from
regional atmospheric background stations and found that the
regional inventory failed to capture the influencing factors of
strong regional sources on stations in China.

To improve the model performance, high–resolution modeling
systems have been applied in some studies (Jang et al., 1995a; Jang
et al., 1995b; Aguilera et al., 2013; Ferreira et al., 2013; Guttikunda
and Calori, 2013). The use of a finer resolution provided some
improvements in the simulations but did not always lead to better
performance (Queen and Zhang, 2008; Liu and Zhang, 2013).
Nishikawa and Kannari (2011) compared the emission maps within
Osaka prefecture with both 1×1–km and 3×3–km mesh
observations. NH3 was found to be better represented at finer
resolution, while NOX showed the opposite results. The
representation of SO2 did not differ greatly between the two
meshes. Valari and Menut (2008) noted that one of the principal
sources of uncertainty affecting the model results for ozone (O3) as
the resolution increases is the input emission flux. Increased
emission resolution was found to improve model results only up to
a certain point, beyond which the induced noise became large.
Fountoukis et al. (2013) examined the impact of grid resolution
using the regional three–dimensional chemical transport model
(CTM) PMCAMx (Particulate Matter Comprehensive Air quality
Model with extensions) and found that the use of high resolution
decreased the bias for BC (black carbon) and OA (organic aerosol)
concentrations. Future work is suggested to combine high grid
resolution with high–resolution emissions inventory. Shrestha et al.
(2009) and Liu et al. (2010) also reported better performance using
fine resolution and suggested applying the high–resolution models
in studying highly urbanized regions with complex terrain and
land–use as well as highly polluted areas. Because it remains
unclear whether increasing resolution will positively influence the
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model, there is a need for investigation on a local scale, especially
in highly industrialized areas.

Baoshan District, one of the most important industrialized
areas in China and the host of the most competitive steel and iron
production plant in the world, was selected as the study area. The
industrial sector, which is 60.1% of the size of the tertiary sector in
2009, dominates the regional economy and contributes extensively
to local air pollution. A field study showed that industrial metal
lurgical processing and re–suspended soil dust are the major
contributors of PM0.43–2.1 and PM2.1–10 in this district (Hu et al.,
2014). Baoshan District is also suffering from rapid urbanization.
The agricultural population decreased by 4.0% from 2005 to 2009
(BBS, 2009; SBS, 2009). In this work, the impact of spatial
resolution on air quality simulation in this highly industrialized area
was assessed. The WRF/CMAQ modeling system was operated at
both 3–km and 1–km resolutions for January, April, July and
October of 2009. In the first part of this study, we compare the
allocation of emission inventory at 3–km and 1–km resolutions. In
the second part, the WRF/CMAQ model performances at the two
resolutions are temporally and spatially evaluated through ground
level observations. Analysis of a specific site is conducted to further
study the impact of resolution on air quality simulation in three
typical area types (urban, industrial and rural).

2. Methodology

2.1. Overview of the study area

Baoshan District is located in the northeastern part of the
Shanghai metropolitan area, at the junction of the Yangtze River
and Huangpu River. It covers 280 km2 (4.6% of Shanghai) and has a
population of 1.4 million (7.1% of Shanghai). The regional Gross
Domestic Product (GDP) increased by 12.1% to 91.3 billion Chinese
Yuan in 2009, accounting for 6.1% of Shanghai’s total GDP.

Steel and iron manufacturing and energy production are the
major industries in the region. Baosteel Group Corporation is one
of the most competitive steel and iron groups in the world,
featuring the highest level of modernization of any group. It
ranks second among the world’s steel and iron enterprises
(BAOSTEEL, 2012). Baosteel Group Corporation has four steel and
iron manufacturing plants in Baoshan District, located in the towns
of Luojing, Yuepu, Yanghang and Wusong (1, 2, 3 and 4,
respectively, in Figure 1b). The town of Yuepu hosts one of the
most productive power plants in Shanghai, the Huaneng Power
plant (5 in Figure 1b), one of the largest listed power producers in
China (HPI, 2011).

2.2. Local emission survey using the bottom–up method

To obtain a clear picture of the emission features of Baoshan
District, a refined emission inventory at 1 km×1 km resolution has
been developed using a completely bottom–up approach. There
are 6 high–stack point sources and 623 medium to small–size point
industrial sources in Baoshan District. The heights of the stacks and
outlets emitting exhaust gas range from 20 m to 250 m based on
the survey data (Tan et al., 2014). According to the survey of local
industrial activities, industrial sources account for over 80% of all
emissions of SO2, NOX and CO, of which approximately 70% come
from the four Baosteel Plants and the Huaneng Power Plant.
Transport sources (including road dust emission) are the main
contributors of PM10 (85%) and PM2.5 (70%). Specific emission
characteristics were found in this highly industrialized area. The
transport emissions of PM10 and PM2.5 are much higher in Baoshan
than in the Yangtze River Delta (YRD) region (Dong et al., 2009;
Huang et al., 2011a). Heavy–duty trucks carrying material through
the area have aggravated the emission conditions. Meanwhile,
industrial emission of NH3 is also much higher in Baoshan than in
the YRD region, which has not been considered in most previous
regional emission inventories (Tan et al., 2014). Field sampling
analysis also showed that the source apportionment of particulate

matter in this industrialized area is very different from that in the
Putuo District, a residential/commercial area in Shanghai (Hu et al.,
2014).

A local emission survey was conducted to develop a refined
emission inventory to fulfill the requirements for a detailed study
of the district. To improve the accuracy of both the emission
amounts and the location of the emission sources, we updated the
emission inventory based on the emission inventory developed by
the Shanghai Environmental Monitoring Center (SEMC) (described
in section 2.3). Special attention was paid to the two major
industries, especially the location of outlets and the emission
amounts of the four Baosteel plants, which account for
approximately 90% of the regional industrial pollution. Field
measurements using GPS instruments were conducted to deter
mine the geographic positions of the major emission outlets
scattered throughout the large plants. Based on the results,
99 major outlets are treated as isolated emission sources, and the
emissions from other outlets were combined into these sources
according to the principle of <Integrated Emission Standard of Air
Pollutants (GB 16297–1996)> (MEP, 1996). Although the total
emission amounts of the four plants can be derived from the China
Pollution Source Censuses of 2007 and 2009, there are no separate
emission data for each major outlet (CPSC, 2009). Here, two other
databases developed for key pollution sources –the Charge
Declaration of Key Pollution Sources and the Retrospective
Environmental Impact Assessment Report– were used to obtain
separate data for each major outlet. The former database provides
detailed information for major discharge outlets, such as outlet
height, yearly emission, exhaust control efficiency and monitored
emission data. The latter database provides the emission amounts
of important production processes as calculated by the methods of
material balance. In this way, the accuracy of both the emission
quantity and the locations of major industrial sources are guar
anteed, and the data are more appropriate for further study in the
highly industrialized district on local dimensions. Detailed informa
tion on the establishment of this emission inventory has been
reported in the work of Tan et al. (2014).

We used ArcGIS tools to allocate the emission inventory. For
the temporal allocation of emissions, we used profiles for different
emission sources. In this study, these temporal variations were
derived from local investigation. For the spatial allocation of
emissions, we used GIS to distribute the emission sources. Stack
emission sources, such as power plants and industrial sources,
were distributed into grid cells according to their geographical
position as determined by GPS instruments. Residential and
agricultural sources were treated as area sources. We calculated
the emissions of area sources at the town scale and used GIS tools
to allocate emissions into grid cells. Transport sources were
distributed according to the density of traffic flow.

2.3. Modeling system and setup

The WRF/CMAQ air quality modeling system was applied in
this study. The next–generation mesoscale Advanced Research and
Forecasting model (WRF–ARW, version 3.3) (Skamarock et al.,
2008) was used to produce meteorological fields in three nested
domains, as described in Figure 1a. Domain 1, a 252×207 cell grid,
in size and was developed on a 9–km resolution covering Eastern
China. Domain 2, covers all of Shanghai with a 84×75 cell grid at a
3–km spatial resolution. Domain 3, covers Baoshan District and
was established on a 1–km spatial resolution with a 66×63 cell grid.
The National Centers for Environmental Prediction (NECP) Final
Analysis (FNL) data with a 1×1 resolution were used to provide the
initial and boundary conditions for the WRF simulation with
24 sigma layers used for vertical resolution (NCEP, 2014). For the
physical configuration, we used the WRF single–moment 6–class
microphysics scheme, rapid radiative transfer model (RRTM)
longwave radiation scheme, Dudhia shortwave radiation scheme,
5–layer thermal diffusion land surface scheme, MRF planetary
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boundary layer scheme and Kain–Fritsch cumulus parameterization
scheme. The WRF output files were processed by the
Meteorology–Chemistry Interface Processor (MCIP) to create input
meteorology files for CMAQ (Otte and Pleim, 2009).

A three–dimensional Eulerian atmospheric chemistry and
transport model, CMAQ model version 4.6, was applied to simulate
the concentrations of the major pollutants. Designed as a “one–
atmosphere” model, CMAQ can address the complex couplings
among several air quality issues simultaneously across spatial
scales ranging from local to hemispheric (Byun and Ching, 1999;
Byun and Schere, 2006). The model was run on domain 1 and
domain 2 in January, April, July and October of 2010 as seasonal
representatives. The boundary conditions were provided by the
outputs from coarser grids. The vertical resolution includes
24 layers, with denser layers at lower altitudes. The corresponding
layer heights were 19, 49, 99, 149, 249, 349, 500, 700, 900, 1 151,
1 316, 1 399, 1 569, 2 093, 2 274, 2 460, 2 942, 3 452, 4 565, 5 825,
7 308, 9 114, 11 456 and 14 294 m. We set 19 m as the height of
the first layer because all the outlets in this study are above 20 m.
In addition, 249 was set as the height for the fifth layer, as all
outlets except the major outlets in the Baosteel Plants and
Huaneng Power Plants are below that height. In this way, we can
obtain a clear picture of the different types of emission outlets.

We used the CB5 scheme as the gas–phase chemical
mechanism, Aero4 as the aerosol mechanism and Cloud_acm_ae5
as the liquid–phase chemical mechanism. The input emission
inventory was unified from three differently established emission
databases. For the areas inside Baoshan District, the local emission
inventory described in Section 2.2 was applied. For the areas inside
Shanghai but outside Baoshan, we used the emission inventory
developed by the SEMC. This inventory was developed for major
anthropogenic air pollutants and VOC species in Shanghai for the
year 2009 at a 1 km×1 km resolution, considering industrial,
transportation, residential and agricultural sources. For industrial
sources, information such as geographical data, fuel consumption
and the exhaust control efficiency of most industrial sources were
collected using the database from the China Pollution Source
Census (CPSC, 2009). The emission amounts were estimated by
emission factor methods. The transport emissions were calculated
by the International Vehicle Emission Model (IVE model), which is
designed to estimate emissions from motor vehicles (ISSRC, 2014).
The evaluation of the IVE model with remote sensing data revealed
that it provides reasonable performance for the prediction of road
carbon monoxide (CO) emissions but generally overestimates NOX
(Guo et al., 2007). Using a bottom–up approach, the emission

inventory gives detailed information for major sources and
provides higher accuracy than national– or continental–scale
inventories. The general methods for developing the emission
inventory have been applied in the development of emission
inventories in the Pearl River Delta (PRD) and Yangtze River Delta
(YRD) (Li et al., 2008; Zheng et al., 2009; Wang et al., 2010; Huang
et al., 2011a; Huang et al., 2011b; Li et al., 2011).

For the areas outside Shanghai, Regional Emission Inventory in
Asia and TRACE–P (Transport and Chemical Evolution over the
Pacific) emission inventories were used. The REAS (Regional
Emission Inventory in Asia) is the first emission inventory
developed for Asia with the integration of the historical, present
and future emissions of Asia based on a consistent methodology
(Ohara et al., 2007). The most recent version provides SO2, NOX,
CO, NMVOC, black carbon and organic carbon emissions from fuel
combustion and industrial sources for the year 2009 with a
resolution of 0.5×0.5. TRACE–P is an inventory of air pollutant
emissions in Asia developed to support atmospheric modeling and
the analysis of observations made during the TRACE–P experiment
(Streets et al., 2003). It provides the emission data for SO2, NOX,
CO2, CO, CH4, NMVOC, BC, OC and NH3 at a 10×10 resolution.
Comparing the two emission inventories, we adopted the CO, VOCS
and NH3 emissions from REAS and the SO2, NOX, PM10 and PM2.5
emissions from TRACE–P. Because there is no classification for
emission sources in REAS, we applied the method used in TRACE–P
and divided the pollution sources into power plants, other
industrial sources and area sources. The unified inventory can
provide general information for regional air pollution, but it has
significant shortcomings. The mobile sources are categorized as
area sources and cannot be treated separately. There is also an
absence of heights for emission sources. The deficiencies have also
been identified by modeling evaluation studies (Tan et al., 2004;
Streets et al., 2006). Evaluating the TRACE–P emission inventory,
Carmichael et al. (2003) reported major discrepancies between the
modeled and observed pollutants in the Yellow Sea, with the
model systematically underestimating the observations, and
suggested an underestimation of the emissions from the domestic
sector. Ma et al. (2006) compared the TRACE–P simulation results
in China with the Global O3 Monitoring Experiment (GOME)
satellite data. The TRACE–P is found to underestimate the
tropospheric nitrogen dioxide (NO2) column density in all regions
by more than 50% with respect to the GOME measurements. Thus,
the use of these regional emission inventories may introduce high
levels of uncertainty.

Figure 1. Two model domains for CMAQ simulation (a) and the study area (b). Circle symbols represent the 5 major industrial
emission sources: 1 Baosteel Heavy Plate Subsidiary, 2 Baosteel Plant, 3 Baosteel Special Steel Subsidiary, 4 Baosteel Stainless
Steel Subsidiary, 5 Huaneng Power Plant. Star symbols represent the seven monitor stations: a Baoshan Monitor Center, b

Yanghang Station, c Gangyansuo Station, d Songnan Station, e Miaohang Station, f Gucun Station, g Luojing Station.



Tan et al. – Atmospheric Pollution Research (APR) 325

2.4. Observational data and evaluation methods

We used the hourly average observation data for air
pollutants from 7 stations in the governmental standard moni
toring network run by Baoshan Environmental Protection Bureau.
The locations of 7 stations are presented in Figure 1b. Baoshan
Monitoring Center is located in the town of Youyi in the city center.
Gangyansuo and Songnan Stations are located in the towns of
Wusong and Songnan, respectively, near the Baosteel Stainless
Steel Subsidiary. These two stations are right in the regional
industrial area. Yanghang and Gucun Stations are located in the
towns of Yanghang and Gucun, respectively, relatively far from the
heavy–industry plants. Luojing Station is located in the town of
Luojing, where agriculture is still the main activity. Generally, these
stations have a good representation of the concentrations at the
regional level for different functional regions like urban, suburban
and industrial.

The observational meteorological data from Baoshan Moni
toring Center Station is used to assess WRF performance. The
observation data are collected at 6–h intervals each day. The WRF
results at two resolutions are verified in Section 3.2, and the CMAQ
results are evaluated on a temporal scale in Section 3.3 and on a
spatial scale in Section 3.4.

The model performance is evaluated by statistical indexes,
including the relative error (RE), correlation coefficient (R),
normalized mean bias (NMB), normalized mean error (NME) and
root mean square error (RMSE). RE and NMB are measures of
model bias, and NME and RMSE are measures of model error (Eder
and Yu, 2006). The indexes are defined as:

(1)

(2)

(3)

(4)

(5)

where, Si is the simulation result, is the mean of simulation
results, Oi is the observation data, is the mean of observation
data.

3. Results and Discussion

3.1. Emission inventory allocation in 3–km– and 1–km–resolution
grids

Highly industrialized areas are found to have specific emission
features (Tan et al., 2014). Increasing the model resolution
enhances the model’s ability to represent emissions at the scale of
individual cities (Chen et al., 2009). According to the emission
inventory, industrial sources, especially the four Baosteel Plants
and Huaneng Power Plant, are the main contributors to SO2, NOX
and CO emissions. In the 1–km–resolution map (Figure 2), the

towns of Yuepu and Wusong, the locations of the Baosteel Plants
and Huaneng Power Plants, are characterized by high emissions.
The PM10 emissions are spread throughout the district according to
the traffic lines. The southeastern areas feature higher emission
densities than the northwestern ones because of greater flow of
vehicles in urban areas relative to rural areas. The industrial areas
also have high emission densities due to the heavy–duty trucks
carrying material through the area.

The emission features of this industrialized area are clearly
presented using the fine–resolution grids. These emission features
are also observed when using the coarse grid, but the coarser grids
generally average the high emissions with nearby areas, yielding an
unexpectedly high emission density for the neighboring areas and
impairing the differentiation of various regions. This problem is
significant for heavily polluted areas, such as the town of Yuepu
and Wusong town. The finer–resolution network reveals the
emission features of the highly industrialized area in more detail
and provides more accurate input data for model simulation.

3.2. Evaluation of meteorological simulation

Metrology fields have a strong influence on the transport,
diffusion, interaction and deposition processes of pollutants. The
WRF simulation results at 3–km and 1–km resolutions were
evaluated by comparison with the ground observations at the
Baoshan Monitoring Center (Figure 3).

The temperature is well simulated by the WRF model at both
resolutions. The modeled values are close to the observations
except for an overestimation in January of 0.6° and 0.5° for the
3–km and 1–km resolutions, respectively. The model performs best
in January (R=0.98 for both resolutions) and worst in July (R=0.83
for both). The relative humidity is underestimated in January (–5%
for both) and April (–7% for 1 km and –12% for 3 km) but
overestimated in July (7% for both) and December (2% for both).
The model results at both resolutions are generally in good
accordance with each other, except for the large difference from
4/18 to 4/21, when the model slightly underpredicts the tempe
rature and missed the concentration peak of relative humidity at
coarse resolution. The discrepancies between the two resolutions
are not significant.

Wind speed is generally overestimated by the model at both
resolutions, especially in July (over 26%) and December (over 30%).
The model also fails to capture the peak timings in July at both
resolutions (R=0.44 for 1 km and R=0.47 for 3 km) and largely
overestimates the wind speed in December, especially after
December 20th. Although the changing tendencies of the model
results are well simulated, the model values are generally higher
than the observations by 2 m/s, especially at fine resolution. It is
also found that the model tends to give higher values at the end of
each month. Wind direction is also modeled worst in July.
However, the changing tendencies are generally well captured at
both resolutions. We find some significant differences between the
two resolutions on April 12th, April 22nd and July 4th, when the
model results failed to match the observations at fine resolution,
whereas the results at coarse resolution provide a better fit. In
short, the model gives reasonable descriptions of wind speed at
both resolutions, and the wind direction is slightly better modeled
at coarse resolution.

3.3. Evaluation of temporal air quality trends at 3–km and 1–km
resolutions

Figure 4 compares the simulation results at 3–km and 1–km
resolutions with observations from Baoshan Monitoring Center.
The SO2 and NO emissions are highest in January and lowest in
December, with significant seasonal variation, while the NO2, CO
and PM10 emissions are more stable throughout the year. This
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result is in accord with that of Liu et al. (2010). The model succeeds
in capturing the seasonal changing tendency of SO2, NO, CO and
PM10 at fine resolution, while missing some NO2 peaks in the
beginning of July. The coarser grid produces some unexpected

concentration peaks for NO, NO2 and PM10, most evidently in
December, and intensive peaks throughout the month, while the
fine–resolution and observation values are rather stable. The
difference is even greater in the CO simulation results.

Figure 2. Emission inventory of major pollutants in domain 2 at 3 km (left) and 1 km (right) resolutions.

Coarser Resolution Fine Resolution
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Figure 3.WRF simulation results (6–hour interval) at Baoshan Monitor Center at 3 km resolution (light gray line) and 1 km resolution
(dark gray line) are compared with ground observations (black circles).

Figure 4. CMAQ results [hourly concentration (mg/m3)] at the Baoshan Monitor Center at 3 km resolution (light gray line) and 1 km
resolution (dark gray line) are compared with ground observations (black circles).
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The model performs both best and worst in July. The model
results are in good accordance with the observations for all the
pollutants from July 13th to 26th, while all the pollutants except NO2
are largely underpredicted and NO2 is overestimated from July 1st
to 6th. We noticed that the two episodes have opposite pollution
trends. During the well–simulated episode, the concentrations of
all the pollutants are the lowest among the four months, and the
temporal variations are comparatively stable. In contrast, during
the poorly simulated episode, the concentrations are rather high
and constantly changing. The model tends to perform better in
light pollution episodes than heavy pollution episodes. This may be
because the model is less sensitive to the input of environmental
parameters when simulating an episode at low pollution levels and
thus partly eliminates the uncertainty caused by the meteoro
logical field.

Table 1 summarizes the statistics for the hourly average model
results at the 3–km and 1–km resolutions. SO2 is underestimated
by the model at coarse and fine resolutions (by 41% and 50%,
respectively). For the other pollutants, the relative errors are lower
for the fine resolution than the coarse resolution. The model
overestimates the values by 26% to 245% at the 3–km resolution
and –25% to 59% at the 1–km resolution. The NMB, NME and
RMSE also illustrate that use of fine resolution brings the model
results closer to the observations. The temporal variations of NO2,
CO and PM10 are also better captured by the finer resolution, with
a correlation coefficient of approximately 0.3 (weakly related) at
3 km to over 0.5 (moderately related) at 1 km.

It should be noted that SO2 is the only pollutant modeled
worse at finer resolution. Although the model yields higher values
in January than in the other three months, it still underestimates
the concentrations by 70%. The same result was also reported in
the work of An et al. (2013) when simulating the INTEX–B2006
emission inventory. The SO2 of Linan (a station representing the
Yangtze River Delta) was found to be underestimated to a larger
extent in winter than in the other seasons, while the correlation
between the observed and simulated data in winter (0.6) was
better than that in summer and autumn (approximately 0.5 and
0.55, respectively). However, severe SO2 pollution has been a
major problem in Beijing during the heating period of winter
(Huang et al., 2011a). In some studies, SO2 is overestimated in
winter, when vertical and horizontal transport is a major factor
affecting SO2 concentration because chemical oxidation is slow
(Luo et al., 2011). The long–term transport from North China to the
YRD also reinforces the pollution caused by large local emissions (Li
et al., 2011). In this work, the long–term transport from North
China is not completely considered because the simulating domain
for CMAQ is not large enough to include all the North China
regions. Meanwhile, the SO2 emissions may be underestimated in
the TRACE–P inventory because the INTEX–B inventory, as an
update of the TRACE–P, has been found to underestimate SO2 in
winter in the YRD region (Zhang et al., 2009; An et al., 2013).
Moreover, the CMAQ was found to poorly simulate the SO2 daily
variation characteristics because of the inadaptability of emission
time–variant factors (Xie et al., 2012).

3.4. Evaluation of the spatial distribution of air quality at 3–km
and 1–km resolutions and comparison of model performances in
urban, rural and industrial areas

The spatial distributions of the major pollutants at resolutions
of 3 km (left) and 1 km (right) are shown in Figure 5. Generally, the
distributions in both maps exhibit good consistency with the
emission allocation illustrated in Section 3.1. The maximum
concentration in Baoshan District is located in the major industrial
center and along the major traffic line in the local urban center.
However, the finer–resolution map shows a clearer pollution
diffusion tendency with much higher concentrations in polluted
areas than in the nearby areas. In the coarser map, the spatial
discrepancies are averaged and thus less distinct between
industrial and non–industrial areas. Table 2 presents the relative
error at both resolutions at the seven monitoring stations. The
performance of the finer grid is obviously better than that of the
coarser grid. The coarser–grid model generally overestimated the
concentration of all pollutants except SO2. High model errors are
found in the sites near the high–concentration areas, such as
Baoshan Monitoring Center near the industrial center and the
town of Miaohang near the urban center, where NO is over
predicted by 278% and 401%, respectively. In the other areas, such
as the town of Luojing, the differences between the two
resolutions are less obvious. It is clear that finer grids give more
accurate results for heavily polluted areas than coarser grids. In
particular, the Gangyansuo station, as a site located in the
industrial center, is simulated best (Table 2), indicating the
important role of the finer emission inventory in industrial regions.

Further analysis was conducted on specific sites to study the
model performance on different types of areas in this area.
Gangyansuo station, located in the industrial center near the
boundary between Wusong town and the town of Songnan,
represents an industrial area; Baoshan Monitoring Center, located
on Youyi Street, is a typical urban site; and Luojing station, located
in the north of Baoshan, where agriculture is still common, is the
representative of rural areas. Figure 6 summarizes the statistical
evaluations of model performance at both resolutions. The model
overestimates all pollutants except SO2 at 3–km resolution in all
the sites, and the performances are obviously improved at finer
resolution. Large errors are found for the urban site, where both
the NMB and NME indexes of NO reached 300. The daily averaged
concentrations of major pollutants at 3–km (filled points) and
1–km (empty points) resolutions are presented in Figure 7. In the
urban and rural sites, the fine–resolution results have much higher
R values for all pollutants except SO2. In the industrial site, the
model performed badly at fine resolution, with R values much
lower than those at coarse resolution. The model accuracies for
SO2, NOX and PM10 in predicting exceeding air quality standards are
presented in Table 2. Although the model did not improve
predicting SO2 using finer resolution, NOX and PM10 exceeding
conditions are better predicted. The accuracies at 3–km resolution
differ from 57% to 90% and finer resolution improved the values to
71%–90%.

Table 1. Statistical performance (hourly averaged) model at Baoshan Monitor Center at 3 km and 1 km resolutions

Pollutants Resolution Relative Error (%) Correlation (R) NMB (%) NME (%) RMSE (μg/m3)

SO2
3 km –40.8 0.27 –39.15 70.82 0.05
1 km –49.7 0.35 –48.34 75.44 0.04

NO
3 km 245.0 0.33 291.34 344.75 0.10
1 km 58.6 0.37 79.93 160.12 0.06

NO2
3 km 25.8 0.26 28.32 65.02 0.05
1 km –11.9 0.50 –10.16 48.48 0.04

CO
3 km 74.8 0.35 83.34 120.06 1.01
1 km –24.9 0.51 –21.23 60.27 0.52

PM10
3 km 74.4 0.36 76.15 119.01 0.12
1 km –12.7 0.51 –11.82 61.94 0.06
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Figure 5. Spatial distribution of major pollutants at 3 km (left) and 1 km (right) resolutions
(mg/m3). Star symbols represent the 7 monitoring stations.

Coarser Resolution Fine Resolution
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Table 2. Relative error of model results at the seven monitor stations at 3 km and 1 km resolutions (%)

Stations (a) Baoshan
Monitor Center

(b)
Yanghang

(c)
Gangyansuo

(d)
Songnan

(e)
Miaohang

(f)
Gucun

(g)
Luojing

SO2
3 km –39.3 –41.3 –36.1 –42.6 17.2 0.6 –47.7
1 km –48.7 –40.5 –32.5 –41.4 –4.4 –22.6 12.3

NO
3 km 277.8 63.3 39.6 145.3 401.1 30.4
1 km 71.5 17.3 7.9 55.8 136.0 64.9

NO2
3 km 27.2 14.4 4.7 –11.8 31.0 150.8 18.9
1 km –11.3 4.6 0.7 –17.2 8.1 100.1 33.6

CO
3 km 78.9 0.6 42.9 2.2 –5.6
1 km –23.8 –27.3 –42.2 –59.9 –22.4

PM10
3 km 76.1 20.5 33.9 53.0 78.3 136.9 –11.0
1 km –12.8 –4.6 –2.7 –9.7 28.2 14.8 –5.8

Figure 6. Statistical performance (daily averaged) at 3 km and 1 km resolution in the urban site, industrial site, and rural site.

Among the three area types, the urban area is better
predicted at fine resolution in terms of both the magnitude and
the variation tendency. In the rural area, the coarser grid did not
deteriorate the model performance, and the results at the two
resolutions are quite similar. The emission inventory in rural area is
considered to be one of the main reasons for this. The
contributions of emissions related to agricultural activities such as
fertilization, animal husbandry and outdoor biomass burning are
higher in rural areas than in industrial and urban areas. The
emissions were calculated by the emission factor method using the
activity data collected from statistical yearbooks, and the emission
amounts are not as refined as in the industrial and urban areas,
thus reducing the impact of model grid resolution. Meanwhile, the
lack of studies on the daily variation factors of agriculture has also
induced errors in simulating the changing tendency of pollution in
rural areas. For the industrial site, although the emission amount is
modeled better than that at any other site at fine resolution, the
changing tendency is not captured well. On the contrary, coarse
grids simulated the changing tendency well, with very high R
values, but failed to capture the magnitude of the pollution level.
We also noticed that the R values in the fine–resolution results for

CO were for the urban (0.64) and rural (0.47) sites but low for the
industrial site (<0.1). Because CO has simple removal mechanisms
in the atmosphere, the model performance is strongly influenced
by meteorological conditions, especially wind speed and wind
direction. The temporal emission allocation is also considered as
one the main reasons. The same temporal allocation profile was
used for all industrial sources except power plants, and these
discrepancies may increase the uncertainty in simulating the
changing tendencies.

4. Conclusions

The impact of spatial resolution on air quality simulation in a
typical industrial area was investigated in this study. The difference
between the emission inventories allocated in 3–km– and 1–km–
resolution grids illustrates that the emission inventory allocated at
a finer resolution gives more detailed information over the
industrial area. The model resolution has a minor impact on
simulating meteorological factors but an important influence on air
quality simulation.

NO PM10CO

SO2 NO NO2 CO PM10
PM10CONO2NOSO2

NO2NOSO2PM10CONO2SO2

Urban
Industry
Rural
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Figure 7. CMAQ results (daily averaged (mg/m3) at 3 km (empty point) and 1 km resolution (filled point) in the urban, industrial
and rural sites.

The CMAQ performances at the two resolutions were
evaluated by ground observations both temporally and spatially. In
the temporal evaluation, the model performance is improved by
the use of the finer resolution in terms of capturing both the
magnitudes and the variation for all the pollutants except SO2. The
relative errors range from 26% to 245% at coarse resolution but
only –25% to 59% at fine resolution. The changing tendencies for
NO2, CO and PM10 are improved from approximately 0.3 at coarse
resolution to over 0.5 at fine resolution. Many unexpected
concentration peaks are produced at coarse resolution, especially
in December. SO2 is underestimated by both resolutions, especially

in winter at fine resolution because the long–term transportation
from North China during the heating season is underpredicted. In
the spatial evaluation, the relative errors at the seven monitoring
stations range from –43% to 401% at coarse resolution and –60%
to 136% at fine resolution. Although the performance is not
improved for all sites by increasing the model resolution, a fine–
resolution network is more generally accurate for simulating
industry–intensive areas. A coarser network generally overesti
mates all pollutants except SO2, especially in sites near heavily
polluted areas.

Urban RuralIndustry
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Further comparison of the three types of areas (urban,
industrial and rural) showed that the urban area is better predicted
at fine resolution in terms of both magnitude and variation
tendency. In the rural area, the impact of resolution was not
significant, possibly because of the emission inventory used. In the
industrial area, although the coarse grid captured the changing
tendency well, with very high R values, it failed to capture the
magnitude of the pollution level. On the contrary, the fine grid
succeeded in predicting the pollution level but failed for the
temporal variation. Inadequate study of the temporal allocation for
different industrial sources is very likely to increase the
uncertainty. Meteorological conditions, especially wind speed and
wind direction may also account for the simulation errors in this
case.

A high–resolution modeling system coupled with a refined
emission inventory was applied to simulate the air quality in a
highly industrialized area. The accuracies of both the emission
profile and the meteorological field were the key points. To
improve the accuracy of the emission profile, collecting detailed
information on local industrial activities is suggested. Regarding
the meteorological simulation, the model deviation from the real
meteorological conditions is only slightly reduced by the high–
resolution network, and the result is still inadequate for
representing the real conditions, especially in the areas with
intensive emission sources. Further study focusing on the
combined improvement of the local meteorological field and
emission profile is needed to achieve better simulation results.
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