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Ovarian cancer (OV) is the most lethal form of gynecological malignancy worldwide,
with limited therapeutic options and high recurrence rates. However, research
focusing on prognostic patterns of ferroptosis-related genes (FRGs) in ovarian
cancer is still lacking. From the 6,406 differentially expressed genes (DEGs)
between TCGA-OV (n = 376) and GTEx cohort (n = 180), we identified
63 potential ferroptosis-related genes. Through the LASSO-penalized Cox
analysis, 3 prognostic genes, SLC7A11, ZFP36, and TTBK2, were finally
distinguished. The time-dependent ROC curves and K-M survival analysis
performed powerful prognostic ability of the 3-gene signature. Stepwise, we
constructed and validated the nomogram based on the 3-gene signature and
clinical features, with promising prognostic value in both TCGA (p-value < .0001)
and ICGC cohort (p-value = .0064). Gene Set Enrichment Analysis elucidated several
potential pathways between the groups stratified by 3-gene signature, while them6A
gene analysis implied higher m6A level in the high-risk group. We applied the
CIBERSORT algorithm to distinct tumor immune microenvironment between two
groups, with less activated dendritic cells (DCs) and plasma cells, more
M0 macrophages infiltration, and higher expression of key immune checkpoint
molecules (CD274, CTLA4, HAVCR2, and PDCD1LG2) in the high-risk group. In
addition, the low-risk group exhibited more favorable immunotherapy and
chemotherapy responses. Collectively, our findings provided new prospects in
the role of ferroptosis-related genes, as a promising prediction tool for prognosis
and immune responses, in order to assist personalized treatment decision-making
among ovarian cancer patients.
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1 Introduction

Ovarian cancer (OV) is the leading cause of death among gynecologic malignant tumors,
with 12,810 deaths and 19,880 new cases in the United States, estimated for 2022 (Siegel et al.,
2022). Due to the lack of early symptoms or physical signs, over 70% OVs were diagnosed at
advanced stage (Ebell et al., 2016). Despite development in therapy over the past decades, the
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prognosis for patients was still poor, with a 5-year survival rate under
40% (Bray et al., 2018). Moreover, almost 80% of OV patients will
suffer cancer recurrence after the initial treatment of standard surgery
followed by platinum-based chemotherapy (Jacobs et al., 2016). Given
the poor prognosis, identifying potential prognostic signatures and
innovative therapeutic targets is urgently needed to improve survival.

Moreover, OV is a highly-heterogeneous carcinoma with a broad
spectrum of subtypes, among which the epithelial OV accounts for
50%–70% cases and could be divided into type I, type II and borderline
subgroups (Koshiyama et al., 2014). Type I tumors (account for 28%
OV cases) mainly includes mucinous (MC), low-grade serous (LGS),
endometrioid (END), and clear cell (CCC) carcinomas (Kopper et al.,
2019), while Type II tumors (account for 57% OV cases) include high-
grade serous ovarian cancer (HGSOC), the driving subtype accounts
for 70%–80% of OV mortalities (Cancer Genome Atlas Research,
2011). In this study, we have enrolled in the TCGA-OV cohort as
training set, which only consisted of patients with ovarian serous
cystadenocarcinoma, the most common serous subtype that
represents > 60% of all the cases.

During the past few years, increasing research focused on
ferroptosis, a recently recognized form of non-apoptotic
programmed cell death, which is driven by the iron-dependent
accumulation of lipid reactive oxygen species (ROS) (Mou et al.,
2019). Various signaling pathways have been demonstrated to
participate in the ferroptosis process, including the MAPK
pathway, P53 pathway, and Hippo pathway (Li et al., 2020; Yang
et al., 2021b; Chang et al., 2021). With the deepening of research, the
importance of ferroptosis has been proved mainly in the regulation of
redox biology and metabolism, which could affect the pathogenesis of
various cancers, including OV (Liang et al., 2019). Recently,
therapeutic approaches targeting ferroptosis-related genes (FRGs)
to trigger ferroptosis cell death in OV tissue have attracted
considerable attention (Li et al., 2021). Therefore, exploring the
underlying functions and mechanisms of FRGs changes in OV is
of great significance.

Nowadays, immunotherapy has emerged as a hotspot in the realm
of OV treatment (Xu et al., 2021), though the estimated effective rate
for cancer immunotherapy is less than 30% (Zhao et al., 2022).
Recently, studies indicated that ferroptosis tumor cells in early
death stages could induce an adaptive immune response with anti-
tumor effects (Efimova et al., 2020). Therefore, ferroptosis activation
might become a promising strategy, with great potential to overcome
drug resistance to immunotherapy (Xu et al., 2021). However, to date,
the importance of FRGs in OV prognosis and immunotherapy has
been rarely reported.

In the present study, we comprehensively analyzed the vital role of
FRGs in OV and developed a promising prognostic model based on
the FRGs selected. Additionally, we also evaluated the tumor immune
microenvironment, methylation of N6 adenosine (m6A) level, and
immunotherapy/chemotherapy response between groups stratified by
the FRGs-based signature.

2 Materials and methods

2.1 Data collection

The RNA-sequencing expression profiles (level 3) and
corresponding clinical information of 376 OV tumor samples

were downloaded from the TCGA database (https://portal.gdc.
com) up to April 2022. Meanwhile, the transcriptome data from
180 normal tissues were downloaded as controls from the GTEx
database (https://gtexportal.org/home/datasets), as depicted in
Figure 1A. We normalized the gene expression profiles via the
limma package in the R software. Based on the set cut-off criteria
of |Log2 (Fold Change)| >1 and adjusted p-value < .05, the
differentially-expressed genes (DEGs) between OV and normal
tissues were identified. Additionally, the RNA-sequencing
expression profiles and corresponding clinical information of
111 OV patients were downloaded from the ICGC database
(https://dcc.icgc.org/releases/current/Projects) as the validation
set. The workflow of the study is shown in Figure 1A.

2.2 Selection of ferroptosis-related genes

To identify ferroptosis-related mRNAs of OV patients, we
downloaded a total of 182 FRGs (Relevance score ≥ 1) from the
Genecards database (https://www.genecards.org/). Through the
Venn diagram (http://bioinformatics.psb.ugent.be/webtools/
Venn/), we selected FRGs, which are differentially
expressed between OV tumor tissues and normal tissues. The
multi-gene correlation heatmap was displayed through the
“ggstatsplot” package in the R software package. For Kaplan-
Meier (K-M) curves of the genes, the p-value and hazard ratio
(HR) with 95% confidence interval (95% CI) were generated via
Log-rank tests.

2.3 Construction and validation of the
prognostic signature

The least absolute shrinkage and selection operator (LASSO)
regression algorithm with 10-fold cross-validation was performed
for the feature selection of FRGs with prognostic value.
Multivariate Cox regression analyses were used to build the
FRGs-based prognostic model. The “glmnet” R package was
used to identify prognostic gene signatures and calculate the
risk score of each patient in the datasets based on the signature.
For survival analysis, the samples were divided into low-risk and
high-risk groups based on the medium cut-off value, and the K-M
analysis was used to explore the prognostic significance of the
signature. Time-dependent receiver operating characteristic curve
(ROC) analysis of 1-year, 3-year, and 5-year survival was analyzed
using the “timeROC” R package.

Next, both univariate and multivariate Cox regression analyses
were performed to assess the independent prognostic factors to
build the nomogram. The forestplot was used to show the p-value
and HR (95% CI) of each parameter, using the “forestplot” R
package. Based on the selected prognostic parameters, a
prognostic nomogram was developed to predict the 1-year, 3-
year, and 5-year OS of OV patients in the TCGA dataset, using
the “rms” R package. We measured the discrimination of the
nomogram model through calibration curves, which could
overlay the observed probabilities and nomogram-predicted
probabilities with 95% CI. Moreover, we validated the model via
the Harrell’s concordance index (C-index) with a 10-fold cross-
validation.
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2.4 RNA isolation and quantitative real-
time PCR

OV tissues were obtained from 36 OV patients, who have received
cytoreductive surgery, followed by platinum-based chemotherapy, at
the Department of Gynecology in Renji Hospital from 5 Marc 2019 to
16 December 2019. OS (overall survival) was measured from the date
of initial surgery to the last follow-up or death. Progression-free
survival (PFS) was identified from initial treatment to the last
follow-up or OV progression, which was assessed by clinical and
radiographic evidence. This project was approved by the Ethics
Committee of Renji Hospital Affiliated to Shanghai Jiaotong
University School of Medicine. All patients provided informed
consents, in compliance with the declaration of Helsinki, for the
usage of their samples for research purposes.

Total RNA of the tissues was extracted by the Trizol Reagent
(T9424, Merk) and then reverse transcribed into cDNA by the

RevertAid First Strand Cdna Synthesis Kit (K1622, Thermo Fisher
Scientific) following the protocols. Then, we conducted the real-time
quantitative reverse transcription-polymerase chain reaction (RT-
PCR) analysis through the SYBR Green Master Mix (A25742,
Thermo Fisher Scientific) using the QuantStudio™ 7 Flex Real-
Time PCR System (Life technologies, United States) following
manufacturer’s instructions. Primer sequences were designed as
follows: SLC7A11, Forward: 5′—TCATTGGAGCAGGAATCT
TCA—3′ and Reverse: 5′—TTCAGCATAAGACAAAGCTCC
A—3′; ZFP36, Forward: 5′—CCCAAATACAAGACGGAACT—3′
and Reverse: 5′—GCTCTGGCGAAGCACA—3′; TTBK2, Forward:
5′—ATGCTCACCAGGGAGAATGT—3′ and Reverse: 5′—TGC
ATGACCACGTAGTTGAAA—3′; and GAPDH, Forward:
5′—GGCAAATTCCATGGCACCG—3′ and Reverse: 5′—TCGCCC
CACTTGATTTTGGA—3′. The comparative expression level was
calculated by the 2−ΔΔCT method. GAPDH was used as an internal
control.

FIGURE 1
Identification of Ferroptosis-Related Differentially Expressed genes (DEGs) in ovarian cancer (OV). (A) The overall flowchart of the study. (B) The heatmap
for differential gene expression. Different colors represent the trend of gene expression between OV and normal tissues. The top 50 downregulated and top
50 upregulated genes were shown. (C) The volcano plot was constructed to list the DEGs between OV and normal tissues via the fold change values and
P-adjust. The downregulated and upregulated DEGs were highlighted in blue and red, respectively. (D) The Venn diagram of the differentially expressed
ferroptosis-related genes (DE-FRGs). (E)Overview of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment
analysis of primary biological actions for the 63 DE-FRGs. Here, the top 20 clusters were listed. The color scale represented p-value, and the size of the circles
represented the gene ratio. (F) The protein-protein interaction (PPI) network of the DE-FRGs.
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2.5 Functional enrichment analysis

To confirm underlying functions and associated high-level
genome information of potential genes, we analyzed the data via
functional enrichment. We conducted Gene Ontology (GO, including
molecular function, biological pathways, and cellular components)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses by Metascape (https://metascape.org), a public-available
online tool to analyze DEGs from multiple data sets (Zhou et al.,
2019). Stepwise, we processed the DEGs through the Search Tool for
the Retrieval of Interacting Genes (STRING, https://string-db.org), a
website that could provide screens for human–protein interactions
(von Mering et al., 2003), after which the Cytoscape software was used
to generate a visualized protein-protein interaction (PPI) network.

2.6 Immune infiltrate analysis

To characterize the tumor immune microenvironment, we
estimated the abundance of tumor-infiltrating immune cells
(TIICs) of each sample through the CIBERSORT algorithm
(Newman et al., 2015), a immunological computing method
based on a gene expression signature matrix with various
marker genes. Original gene expression data from TCGA was
normalized before CIBERSORT analysis. Then, at the
CIBERSORTx website (https://cibersortx.stanford.edu/), we
downloaded the gene signature matrix with interpretation,
which outlined 22 subtypes of TIICs. In order to enhance
deconvolution algorithm’s accuracy, we accounted for the
p-value and root mean squared error of the CIBERSORT. The
correlation between the risk score of the signature and immune
cells was calculated via the Spearman’s correlation test.

2.7 Impact of risk scoring system on ovarian
cancer patients receiving immunotherapy
and chemotherapy

The Pearson’s test was performed to assess the association between
the signature and expression of immune checkpoint genes, such as
cytotoxic T-lymphocyte-associated protein 4 (CTLA4), programmed
cell death protein 1 (PDCD1), and programmed cell death protein
1 ligand 2 (PDCD1LG2), etc. Additionally, based on the RNA-
sequencing expression profiles and corresponding clinical data
from the TCGA database, we evaluated the potential Immune
Checkpoint Blockade (ICB) response. Stepwise, we predicted the
potential ICB response of OV patients through the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm (http://tide.
dfci.harvard.edu), a public-available computational framework which
was developed by Jiang et al. (2018) to model tumor immune escape
and predict ICB response.

Furthermore, we predict the chemotherapeutic response of each
patient based on the Genomics of Drug Sensitivity in Cancer (GDSC,
https://www.cancerrxgene.org/), the largest public-available
pharmacogenomics database. The prediction process was
conducted using the “pRRophetic” R package. To identify effective
drugs for OV treatment, the samples’ half-maximal inhibitory
concentration values (IC50) were obtained from the GDSC
database and estimated by ridge regression.

2.8 Statistical analysis

3 All the bioinformatic statistical analyses were implemented by
the R software (foundation for statistical computing 2020, version
4.0.3). All the p-values had been passed a two-tailed test, and p-value <
.05 was considered statistically significant. Differences between the
low-risk and high-risk groups were compared using theWilcoxon test,
and p-values were adjusted through the BH method. Spearman
correlation analysis was applied to estimate the correlation between
quantitative variables without normal distribution.

3 Results

3.1 Identification of ferroptosis-related
differentially expressed genes in OV

The transcriptome data and corresponding clinical characteristics
of 376 OV patients were obtained from the TCGA database.
Meanwhile, the transcriptome data from 180 normal tissues were
also downloaded as controls from the GTEx database. A total of 6,406
DEGs were identified, among which 2,333 genes were upregulated,
and 4,073 genes were downregulated in OV, compared to the normal
controls (Figures 1B,C). Then, 182 FRGs (Relevance score ≥ 1) were
downloaded from the Genecards database for our further analyses,
among which 63 FRGs were differentially expressed between tumor
tissues and normal tissues, as shown in the Venn diagram (http://
bioinformatics.psb.ugent.be/webtools/Venn/) (Figure 1D). The
enrichment analysis of the 63 differentially expressed ferroptosis-
related genes (DE-FRGs) was processed by Metascape (https://
metascape.org) (Zhou et al., 2019), which exported the top 20 most
significant KEGG and GO pathways in the TCGA-OV cohort
(Figure 1E). The pathways were mainly enriched in cellular
response to chemical stress, response to inorganic substances,
ferroptosis, etc. In order to obtain a PPI network, the DE-FRGs
were processed through the Search Tool for the Retrieval of
Interacting Genes (STRING, https://string-db.org), a website that
could provide screens for human–protein interactions (von Mering
et al., 2003) (Figure 1F).

3.2 Establishment and estimation of
prognostic signature based on ferroptosis-
related genes

For multiple regression analysis, the LASSO-penalized Cox
analysis is a common method to enhance model explicability and
forecast accuracy. From the above-mentioned 63 DE-FRGs, six genes
(ZFP36, ITGB8, SLC7A11,MYCN, SREBF1, and TTBK2) were filtered
to be related to OV patient prognosis through the LASSO regression
model (Figures 2A, B). The overview of the function of the six
potential DE-FRGs was listed in Table 1 (Helland et al., 2011; Nie
et al., 2013; Liao et al., 2015; Cui et al., 2018; Moore et al., 2018; Zhu
et al., 2020; Hong et al., 2021). The expression distribution of the six
optimal prognostic FRGs in OV tumor tissues and normal tissues was
shown in Figure 2C, and the correlation among the FRGs was also
presented (Figure 2D). Next, we used the multivariate Cox hazard
regression analysis to distinguish prognostic genes, namely SLC7A11,
ZFP36, and TTBK2 (Figure 2E). Therefore, the three-gene prognostic
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signature model was ultimately constructed as follows: Risk score =
(−.2084) * SLC7A11+ (.0945) * ZFP36 + (.3619) * TTBK2. The K-M
survival curves showed that OV patients with high expression of
ZFP36 and TTBK2 suffered worse OS, while those with high
expression of SLC7A11 had better OS (Figure 2F).

We focused on the TCGA database as the training set (n = 374)
and the ICGC database as the validation set (n = 111). Then, the risk
score of every OV patient was calculated via the formula mentioned
above. Based on the median cut-off point, we divided OV patients into
two groups: high-risk and low-risk in both training and validation sets
(Figures 3A, B, top). We also showed the survival status of all OV
patients and the expression profiles of the three prognostic genes in
high-risk and low-risk groups (Figures 3A, B, middle and bottom).
Most of the death cases were mainly distributed in the high-risk
group. Additionally, TTBK2 was highly expressed in the high-risk
group, while SLC7A11 was highly expressed in the low-risk group. The

K-M survival curves showed that the high-risk group suffered worse 1-
year, 3-year, and 5-year OS, compared with the low-risk group in the
training set (p-value = .00362) and validation set (p-value = .00579)
(Figures 3C, D). Additionally, the ferroptosis-associated three-gene
prognostic signature showed promising AUC values in the time-
dependent ROC analysis for 1-year, 3-year, and 5-year OS
((Figures 3E, F). Taken together, the ferroptosis-associated three
genes were prognostic signature for OV patients.

3.3 Construction and validation of the
ferroptosis-associated three-gene-based
nomogram

We analyzed the relationship between the ferroptosis-associated
3-gene signature and clinical characteristics (Figures 4A–D). The

FIGURE 2
Establishment of prognostic signature based on ferroptosis-related genes (FRGs). (A) The λ selection diagram for 10-fold cross-validation of tuning
parameter selection in the LASSO model. (B) The LASSO Cox analysis of the optimal prognostic FRGs, including ZFP36, ITGB8, SLC7A11, MYCN, SREBF1, and
TTBK2. The coefficients of the selected features are shown via the lambda parameter. (C) The expression distribution of the six optimal prognostic FRGs in
ovarian cancer (OV) tumor tissues and normal tissues. (D) The heatmap of correlation among the six optimal prognostic FRGs. The ordinate and abscissa
represent genes, while colors represent different correlation coefficients (blue for positive correlation and red for negative correlation). (E) The forest plot of
the prognostic ability of the six optimal FRLs, analyzed via themultivariate Cox hazard regressionmethod. (F) The K-M survival curves of three prognostic FRLs,
namely SLC7A11, ZFP36, and TTBK2.
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results indicated that features including age, race, grade, and FIGO
stage had no significance with the signature (p-value ≥ .05).
Figure 4E showed the distribution of each OV patient, referring
to different clinical variables and the risk groups stratified by the 3-
gene signature. In addition, we conducted both univariate and
multivariate Cox regression analyses to find out whether risk score
was an independent prognostic factor for OV patients (Figures 5A,
B). Through the multivariate Cox regression analyses, we found
that in addition to risk score (p-value < .001), FIGO clinical stage
(p-value = .044) and age (p-value = .008) were also confirmed as
prognostic factors. Based on the integration of risk score, FIGO
clinical stage, and age, we constructed a nomogram of 1-year, 3-
year, and 5-year OS probability among OV patients, with the
concordance index (C-index) of .6334 (Figure 5C). Calibration
curves of the nomogram implied excellent consistency with
standard curves between observed and predicted 1-year, 3-year,
and 5-year outcomes (Figure 5D). Furthermore, we calculated the
nomogram score of every OV patient and divided them into two
groups based on the median cut-off point. The K-M survival curves
showed that OV patients with high nomogram scores suffered
worse OS in both training and validation sets (Figure 5E). Thus, our
results indicated that the nomogram model based on the 3 FRGs
could predict OV patient prognosis efficiently.

3.4 The ferroptosis-related genes predict
prognosis in OV patients

However, considering that the findings of bioinformatics
analysis based on public database have many uncertainties, we
tried to verify the correctness through experiments on human
tissue. We enrolled in 36 OV patients at our institution, with the
medium follow-up time of 37.88 (31.48–42.72) months. The
clinical features of the involved patients were listed in Table 2.
We conducted the qRT-PCR analysis to measure the expression of
SLC7A11, ZFP36, and TTBK2 in the OV tissues. The results
revealed that higher expression of ZFP36 and TTBK2 was found
in OV patients who suffered poor prognosis, while lower
SLC7A11 expression were found among them (p-value < .05,
Figure 6A).

Stepwise, to better evaluate the significance of ferroptosis-
related genes among OV patients, we performed both univariate
and multivariate Cox regression analyses for clinical features in
relation to OV patient prognosis (Figures 6B,C). The results
indicated that SLC7A11, ZFP36, and TTBK2 (p-value = .029,
.004, and .015, respectively) were prognostic factors, in addition
to FIGO clinical stage (p-value = .028). The K-M survival curves
showed that patients with higher expression of ZFP36 and
TTBK2 suffered worse OS, while those with high expression of
SLC7A11 had better prognosis (p-value < .05, Figure 6D), which
was consist with the results of bioinformatics analysis.

3.5 Defining FRGs-related pathways by
gene set enrichment analysis

Stepwise, we defined the FRGs-related pathways through
enrichment analysis among the groups stratified by the 3-gene
signature. The KEGG pathway enrichment analysis identifiedTA
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several critical pathways, such as the microRNAs in cancer, PI3K-Akt
signaling pathway, MAPK signaling pathway, and others (Figure 7A).
As shown in Figure 7B, interestingly, the GO biological process (BP)
pathways were mainly enriched in those related to gene silencing,
G-protein coupled receptor signaling pathway, response to growth
factors, etc. The GO cellular component (CC) pathway analysis
identified significantly enriched pathways, including chromatin,
terminal bouton, intrinsic component of the plasma membrane,
and others (Figure 7C). In Figure 7D, the GO molecular function
(MF) pathways were mainly enriched in RNA binding involved in
post-transcriptional gene silencing, mRNA binding, DNA binding
transcription factor activity, etc. Collectively, pathways related to gene
silence and RNA modification were significantly enriched.

Recently, researchers reported that the m6A, a common type of
RNA modification, played a critical role in cancer development and
progression (Shi et al., 2019). Accordingly, we derived 19 typical
m6A-related genes (including METTL3, METTL14, RBM15B,
RBM15, MTAP, YTHDC1, YTHDC2, ZC3H13, YTHDF1,
YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3, HNRNPC,
HNRNPA2B1, RBMX, ALKBH5, and FTO) from a study on the
clinical significance and molecular characterization of m6A
modulators of 33 cancer types in the TCGA pan-cancer project
(Li et al., 2019). Interestingly, all these m6A-related genes, expected
for YTHDC2, HNRNPC, and RBMX, were significant-highly
expressed in the high-risk group, compared to the low-risk group
(p-value < .05, Figure 7E).

FIGURE 3
Estimation of prognostic signature based on ferroptosis-related genes (FRGs). The distribution of risk score, survival time, and survival status for each
ovarian cancer (OV) patient in the training set (A) and validation set (B). The scatter plot distribution represented the risk score of different samples
corresponding to the survival time and status (top and middle). The heatmap is the gene expression of the three-gene signature (bottom). The Kaplan-Meier
(K-M) curves for patient overall survival (OS) in the high-risk group and low-risk group of the training set (C) and validation set (D). The ROC analysis of the
training set (E) and validation set (F) for OS prediction by the three-gene signature.
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3.6 Immunity analysis for the risk score and
tumor immune microenvironment

Additionally, we evaluated the landscape of immune infiltration among
OVpatients through the CIBERSORT deconvolution algorithm in order to
determine whether this 3-gene signature was related to the tumor immune
microenvironment. Figure 8A summarized the composition of the
22 immune cells infiltrating in OV patients from both low-risk and
high-risk groups. Based on the CIBERSORT analysis, 3 out of the
22 immune cell proportions, including activated Myeloid dendritic cells
(DCs), plasma cells, and M0 macrophages, were significantly different
between the two risk groups. As shown in Figure 8B, activated DCs and
plasma cells were downregulated in the high-risk group compared to the
low-risk group, while M0 macrophages were upregulated. Correlation

analysis between the 22 immune cells implied that Macrophage
M1 and CD8+ T cells had the highest positive relationship, with a
correlation coefficient of .44 (p-value < .0001) (Figure 8C). Except for
the intense negative correlation between all kinds of activated cells and
resting cells, MacrophageM2 and Follicular helper T cells had the strongest
negative relationship, with a correlation coefficient of .46 (p-value < .0001).

3.7 Assessment of response to
immunotherapy and chemotherapy in OV
patients

Nowadays, mountains of evidence support the clinical
implications of immune checkpoint molecules in the realm of

FIGURE 4
The clinical characteristics of OV patients, stratified by the ferroptosis-associated 3-gene signature. (A–D) The stacked bar chart for clinical features
distribution, including age, race, grade, and FIGO stage, among the low-risk and high-risk groups. The significance p-value was analyzed via the chi-square
test. NS, no significance. (E) The Sankey diagram for features, including age, grade, FIGO stage, and the 3-gene signature. Each color represents different
typing, each row represents a different variable, and each line represents the distribution of the same sample refer to different variables.
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immunotherapy for OV patients. Accordingly, we evaluated the
relationships between the risk score and expressions of immune
checkpoint molecules. The results implied that CD274, CTLA4,
HAVCR2, and PDCD1LG2 were significantly higher in the high-
risk group than in the low-risk group (Figure 9A, p-value < .05),
suggesting that OV patients in the high-risk group could be more
likely to benefit from immunotherapies related to these critical
immune checkpoints. Stepwise, we applied the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm to predict clinical
response toward immune checkpoint blockade (ICB) in two risk
groups. Interestingly, we found that OV patients in the high-risk
group had greater TIDE score, which represents poorer efficacy of ICB
and shorter survival after the ICB treatment (Figure 9B,
p-value = .0001).

To assess chemotherapy sensitivity between the two risk groups,
we estimated the half-maximal inhibitory concentration (IC50) of
eight commonly used OV chemotherapy agents by ridge regression
based on the Genomics of Drug Sensitivity in Cancer (GDSC) database
(Figure 9C). Our data showed that the estimated IC50 levels of

Paclitaxel, Vinblastine, Docetaxel, Sorafenib, and Veliparib in the
low-risk group were significantly higher than that in the high-risk
group, indicating that the OC patients in the high-risk group were
more sensitive to these drugs. However, there was no significant
difference in sensitivity to Cisplatin, Bleomycin, and Gemcitabine
between the two risk groups.

4 Discussion

OV is one of the most lethal gynecological malignancies
worldwide, by virtue of its inefficient detection methods and high
recurrence rate (Lheureux et al., 2019). Hence, identifying reliable
prognostic signatures is of great urgency. Recently, emerging research
reported that ferroptosis, a newly discovered type of non-programmed
cell death marked by iron accumulation and lipid peroxidation, was
closely associated with various physiological and pathological
processes, including cancer development (Li et al., 2021; Chen
et al., 2022). As for OV, the possible connection between

FIGURE 5
Construction and validation of the ferroptosis-associated three-gene-based nomogram. The forest plot of univariate (A) and multivariate (B) Cox
regression analysis for ovarian cancer (OV) patient survival, based on the 3-gene signature and clinical features. (C) TheNomogrammodel of the risk score and
clinical indicators for predicting 1-year, 3-year, and 5-year OS of OV patients in the TCGA cohort. (D) The calibration plots of the nomogram for predicting 1-
year (top), 3-year (middle), and 5-year (bottom) OS of OV patients. The dotted line indicated the actual survival. (E) The Kaplan-Meier (K-M) curves for OV
patients in the training (TCGA) and validation cohort (ICGC), stratified by the nomogram score.
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ferroptosis and cancer was mainly bridged through three
“musketeers”: the FSP1-CoQ10 protection pathway (Doll et al.,
2019), GPX4-GSH protection pathway (Zhang et al., 2019), and
GCH1-BH4 protection pathway (Wei et al., 2020). In this regard,
here we identified a ferroptosis-related 3-gene signature and further
evaluated the prognosis value, immune microenvironment features,
and treatment response of the ferroptosis patterns.

In 2021, Yang and colleagues reported a prognostic model of
9 FRGs (namely ACSL3, ALOX12, LPCAT3, PTGS2, CRYAB, HSBP1,
SLC7A11, SLC1A5, and ZEB1) identified by the COX regression
analysis. However, only 60 FRGs were included for signature
identification, and immune analysis was not involved in the study
(Yang et al., 2021a). In another previous investigation, Wang and
colleagues constructed and validated a prognostic model consisted of
15 FRGs and 2 ESTIMATE scores to predict OV prognosis, though
with limited 5-year ROC-AUC of .54, .61, and .54 in various cohorts
(Wang et al., 2021). Up till now, no unified ferroptosis-related
prognostic model has been applied to clinical practice. In the
present study, in order to identify more precise ferroptosis-related
mRNAs of OV patients, we downloaded gene-centric data from the
Genecards database (https://www.genecards.org/), one of the largest
integrative databases that could provide comprehensive information

TABLE 2 The baseline information of ovarian cancer (OV) patients.

Characteristics Number of cases (n, %)

Age

<60 years 15 (41.67%)

≥60 years 21 (58.33%)

Tumor size

<6 cm 17 (47.22%)

≥6 cm 19 (52.78%)

FIGO stage

I–II 8 (22.22%)

III–IV 28 (77.78%)

Pathological grade

G1–2 5 (13.89%)

G3 31 (86.11%)

Ascites

<1,000 ml 18 (50.00%)

≥1,000 ml 18 (50.00%)

Survival status

Alive 19 (52.78%)

Dead 17 (47.22%)

FIGURE 6
The ferroptosis-related genes predict prognosis in ovarian cancer (OV) patients. (A) The expression of SLC7A11, ZFP36, and TTBK2 in the OV tissues,
which was measured by qRT-PCR analysis. The forest plot of univariate (B) andmultivariate (C)Cox regression analysis for OV patient survival, based on the 3-
gene signature and clinical features. (D) The Kaplan-Meier (K-M) curves for OV patients, stratified by the expression of SLC7A11, ZFP36, and TTBK2.
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of all annotated and predicted human genes, which are integrated
from ~150 web sources. Then, we chosen a total of 182 FRGs with
Relevance score ≥ 1 at this database and identified 63 potential
ferroptosis-related genes from the 6,406 DEGs between the TCGA-
OV and GTEx cohorts. Through the LASSO-penalized Cox analysis,
we distinguished a 3-gene signature (SLC7A11, ZFP36, and TTBK2)
with satisfactory prognostic value in both TCGA (p-value < .0001) and
ICGC cohort (p-value = .0064). Combined with other clinical features,
we also provided a promising quantitative measurement of the FRGs-
related nomogram to predict the OV prognosis. To our knowledge,
our study is initial to identify the 3-gene ferroptosis-related signature
for OV, which could improve prognosis prediction and guide clinical
decision-making. However, considering that most traditional gene-
focused methods had limited clinical utility to predict individual
outcomes, researchers developed methods based on the concept of
network markers to provide more meaningful predictive information.
For instance, Song et al. (2015) developed a systems approach to
evaluate associations among gene expression patterns, potential for
clinical metastases, and representative PPIs, which could uncover
novel survival-related subnetwork signature in breast tumor. These

networks might also form the basis of highly-accurate prognostic
classification models for OV patients as well, which should be
validated in future studies.

Among the 3 FGRs identified, only SLC7A11 has been reported in
with function in OV progression. Hong and colleagues reported that
SLC7A11, a signature protein of ferroptosis, could mediate cysteine
uptake and promote glutathione (GSH) production by providing its
precursor cysteine. Meanwhile, PARP inhibitors could promote
ferroptosis in OV by suppressing the SLC7A11 expression (Hong
et al., 2021). Another study claimed that lidocaine promoted
ferroptosis in OV cells by regulating the miR-382-5p/SLC7A11 axis
(Sun et al., 2021). ZFP36, as an RNA-binding protein, is a prominent
inflammatory regulator linked to cancer and the autoimmunity
process (Moore et al., 2018). A study of breast cancer
demonstrated that ZFP36 could inhibit c-Jun expression, which
resulted in the increase of Wee1 expression and prevented cell
cycle progression from the S into the G2 phase (Xu et al., 2015).
TTBK2, as another signature, is a key serine/threonine-protein kinase
in the CK1 superfamily. Previous studies indicated that TTBK2 could
phosphorylate tau and tubulin, which were implicated in tumor

FIGURE 7
(A) The KEGG analysis of primary biological actions for potential mRNA. (B–D) The GO analysis of potential targets of mRNAs was also conducted in the
aspects of biological process (BP), cellular component (CC), and molecular function (MF). The color scale represented p-value, and the size of the circles
represented gene numbers. (E) The violin plot for the expression distribution of 19 m6A-related genes in low-risk and high-risk groups. *p-value < .05;
**p-value < .01; ***p-value < .001; ****p-value < .0001.
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progression (Liao et al., 2015). In kidney carcinoma and melanoma,
TTBK2 expression is associated with resistance to Sunitinib and
cancer cell migration. However, the underlying mechanism of
ZFP36 and TTBK2 is still unknown in OV, which deserves further
exploration.

In addition, we evaluated the landscape of immune infiltration
among OV patients. Three of the 22 immune cells, including activated
DCs, plasma cells, and M0 macrophages, were differently infiltrated
between the two risk groups. The proportion of activated DCs and
plasma cells were downregulated in the high-risk group. Preclinical
models demonstrated that activated DCs are required for the initiation
of effective T cell responses, T cell recruitment into tumor tissue, and
maintenance of effector memory T cell function, thus playing a vital
role in immune regulatory responses and OV progression (Sabado
et al., 2017; Lee and Radford, 2019). A recent study claimed that
tumor-infiltrating plasma cells are significantly related to the CD8 (+)
tumor-infiltrating lymphocytes, tertiary lymphoid structures, and
superior prognosis of OV patients (Kroeger et al., 2016), which is
consistent with our findings. A previous study by Zhang and
colleagues demonstrated that OV cells could stimulate
M0 macrophages to differentiate into M2 macrophages in the TME
by activating the ERK signaling pathway, which finally resulted in
tumor proliferation and migration (Zhang et al., 2020). Surprisingly,

we found that only M0 macrophages were significantly upregulated in
the high-risk group with poor prognosis. This finding needs further
validation and exploration for the mechanism.

To date, therapeutic options for OV remain limited, with a high
recurrence rate and chemoresistance (Webb and Jordan, 2017).
Emerging evidence supported that ferroptosis was closely correlated
with immunotherapy, one of the next frontiers in cancer (Lang et al.,
2019; Jiang et al., 2020). Wang and colleagues reported that
immunotherapy could enhance the effector function of CD8 (+)
T cells and sensitize the tumor cells to treatment by regulating the
ferroptosis process (Wang et al., 2019). Hence, we explored the
differences in response to chemotherapy and ICB therapy between
the two risk groups stratified by the 3-gene signature. The result
revealed that the high-risk group had poorer efficacy in ICB treatment,
while being more sensitive to chemotherapy, including Paclitaxel,
Vinblastine, Docetaxel, Sorafenib, and Veliparib. Besides, high-risk
OV patients could be more likely to benefit from immunotherapies
related to the immune checkpoint molecules, including CD274,
CTLA4, HAVCR2, and PD-L1. As we know, some PD-L1-positive
OV patients respond poorly to PD-1/PD-L1 treatment in clinical
practice (Yang et al., 2020). Accordingly, the action of immune
checkpoint inhibitors could be more complicated than simply
targeting immune checkpoint. Our findings on the relationship

FIGURE 8
Immunity Analysis for the 3-gene Signature Risk Score and Tumor Immune Microenvironment. (A) The Boxplot diagram showed the composition of the
22 immune cells infiltrating in patients from low-risk and high-risk groups, based on the CIBERSORT analysis. (B) The Violin plot showed the difference of
22 immune cells infiltration correlations between two groups stratified by the 3-gene Signature. (C) The correlation matrix for the proportion of immune cells
in OV patients. *p-value < .05; **p-value < .01; ***p-value < .001; ****p-value < .0001.
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between the 3-FRGs signature and immune checkpoint response
might provide some hints.

There are still some limitations of the study. Firstly, the
number of samples in the TCGA-OV cohort is still limited.
Hence more independent large-scale datasets are needed to
verify the signature. Secondly, the underlying mechanism of the
3 identified FGRs, especially ZFP36 and TTBK2, in OV
progression is still largely unknown, which needs further
investigation. Last but not the least, we analyzed the RNA-
sequencing expression profiles and corresponding clinical data

of the TCGA-OV cohort, which was consisted of patients with
ovarian serous cystadenocarcinoma. However, OV is a highly
heterogeneous carcinoma with various histological subtypes,
which have unique genetic, molecular, and immune profiles.
Further researches were still be needed to validated our
findings among each individual histological subtype.

Recently, the rapid advance of single-cell technologies leads to
the growth of single-cell multi-omics data. For instance, Song and
colleagues developed the Single-cell Multi-omics Gene co-
Regulatory algorithm (SMGR), a novel method to detect target

FIGURE 9
Assessment of sensitivity to immunotherapy and chemotherapy among OV patients. (A) The distribution of immune checkpoints gene
expression between the low-risk and high-risk groups. (B) Immunotherapy response prediction for OV patients between the low-risk and high-risk
groups, based on the Tumor Immune Dysfunction and Exclusion (TIDE) analysis. (C) The distribution of the estimated IC50 values for eight typical
chemotherapies, including Cisplatin, Paclitaxel, Bleomycin, Vinblastine, Docetaxel, Gemcitabine, Sorafenib, and Veliparib in the Genomics of
Drug Sensitivity in Cancer (GDSC) database for low-risk and high-risk groups. NS, not significant; *p-value < .05; **p-value < .01; ***p-value < .001;
****p-value < .0001.

Frontiers in Genetics frontiersin.org13

Yang et al. 10.3389/fgene.2022.1094474

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1094474


genes and coherent functional regulatory signals based on the
single-cell assay for transposase-accessible chromatin using
sequencing (scATAC-seq) and the joint single-cell RNA-
sequencing (scRNA-seq) data (Song et al., 2022). Thus, in the
future, with the accurate and reliable integrative analysis of single-
cell multi-omics data, we might further uncover the intrinsic
molecular underpinnings and underlying mechanisms of the
OV prognostic signature.

5 Conclusion

In summary, we identified and validated a novel ferroptosis-
related 3-gene signature (SLC7A11, ZFP36, and TTBK2) as an
independent indicator for predicting the prognosis and treatment
response of OV patients. The immune analysis supported the
relationship between the ferroptosis patterns and specific immune
cell population infiltration and hinted at the potential of
immunotherapy in specific OV populations. Interestingly, the
comprehensive analysis revealed that the signature also interacted
with several vital signal pathways, such as the m6A modification,
though the underlying mechanisms remain unknown so far. Thus, our
findings provided new insight into the ferroptosis patterns and
immune infiltration in OV, and assisted personalized treatment
decision-making through a promising prediction signature for both
prognosis and therapy responses.
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