33 research outputs found

    Microglia lactylation in relation to central nervous system diseases

    Get PDF
    The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    On the foundations of vision modeling IV. Weberized Mumford-Shah model with Bose-Einstein photon noise: Light adapted segmentation inspired by vision psychology, retinal physiology, and quantum statistics

    No full text
    Human vision works equally well in a large dynamic range of light intensities, from only a few photons to typical midday sunlight. Contributing to such remarkable flexibility is a famous law in perceptual (both visual and aural) psychology and psychophysics known as Weber's Law. There has been a great deal of efforts in mathematical biology as well to simulate and interpret the law in the cellular and molecular level, and by using linear and nonlinear system modelling tools. In terms of image and vision analysis, it is the first author who has emphasized the significance of the law in faithfully modelling both human and computer vision, and attempted to integrate it into visual processors such as image denoising ( Physica D, 175, pp. 241-251, 2003). The current paper develops a new segmentation model based on the integration of both Weber's Law and the celebrated Mumford-Shah segmentation model ( Comm. Pure Applied Math., 42, pp. 577-685, 1989). Explained in details are issues concerning why the classical Mumford-Shah model lacks light adaptivity, and why its ``weberized" version can more faithfully reflect human vision's superior segmentation capability in a variety of illuminance conditions from dawn to dusk. It is also argued that the popular Gaussian noise model is physically inappropriate for the weberization procedure. As a result, the intrinsic thermal noise of photon ensembles is introduced based on Bose and Einstein's distribution in quantum statistics, which turns out to be compatible with weberization both analytically and computationally. The current paper then focuses on both the theory and computation of the weberized Mumford-Shah model with Bose-Einstein noise. In particular, Ambrosio-Tortorelli's Gamma-convergence approximation theory is adapted (Boll. Un. Mat. Ital., 6-B, pp. 105-123,1992), and stable numerical algorithms are developed for the associated pair of nonlinear Euler-Lagrange PDEs. Numerical results confirm and highlight the light adaptivity feature of the new model
    corecore