21 research outputs found

    Experience-dependent resonance in amygdalocortical circuits supports fear memory retrieval following extinction

    Get PDF
    Theta range oscillations in the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) are associated with conditioned fear. Here, the authors use exogenous oscillatory stimulation of the BLA and mPFC in mice to determine the dynamic roles of theta-range oscillatory states across conditioned fear and extinction learning

    Gamma-Rhythmic Gain Modulation

    Get PDF
    Cognition requires the dynamic modulation of effective connectivity, i.e., the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backward to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation

    The Performance of Polymer Solution Added with Viscosity Stabilizer and the Evaluation of Its Oil Displacement Efficiency in Daqing Oilfield

    Get PDF
    Aiming at the low viscosity of polymer solution, which is compounded with fresh water but diluted with produced water, and at the problems concerning oil displacement efficiency, an onsite test on polymer solution with viscosity stabilizer (PSVS) is carried out. As a result, it has great and guiding significance to the application and popularization of viscosity stabilizer by studying the performance of polymer solution with viscosity stabilizer and its influence on oil displacement efficiency. In this paper, aiming at two different kinds of polymer solutions among which one is compounded with fresh water but diluted with fresh produced water and the other with aerated produced water, two laboratory evaluative tests concerning viscosity stabilization, anti-shear stability, fluidity, and absorbability of polymer solution as well as its oil displacement efficiency are done. The results of onsite application of PSVS are traced and analyzed. The viscosity stabilization of the polymer solution adding with viscosity stabilizer becomes much better than that of the normal polymer solution. The resistance and the residual resistance factors, the static oil sand adsorption rate and the dynamic core adsorption rate of the solution are all increased markedly. The working viscosity and oil displacement efficiency are improved markedly as well. In comparison with the polymer solution diluted with fresh produced water, the polymer solution diluted with aerated produced water is much better in terms of viscosity stabilization. Comparing with the normal polymer solution with viscosity stabilizer before sheared, the polymer solution which is sheared before adding with viscosity stabilizer performs obviously better in terms of viscosity stability. In contrast to the adjacent block injected with normal polymer solution, the block under onsite flooding test with injection of PSVS features that the average injection pressure increases slightly but keeps steady, the recovery speed of the average monthly water cut of production wells slows down, the thickness of the absorptive layers increases, and the periodic recovery rate improves as well.Key words: Polymer solution; Viscosity stabilizer; Daqing oilfiel

    Forskolin reduces fat accumulation in Nile tilapia (Oreochromis niloticus) through stimulating lipolysis and beta-oxidation

    Get PDF
    © 2018 Published by Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (December 2018) in accordance with the publisher’s archiving policyHigh fat diets are commonly used in aquaculture to reduce feed cost in Nile tilapia, but impair its lipid homeostasis. This study evaluated the role of forskolin on reducing fat accumulation in Nile tilapia (Oreochromis niloticus) by using in vitro and in vivo experiments. The use of 50 μM forskolin in vitro increased free fatty acid and glycerol release, but decreased triglyceride in adipocytes and hepatocytes. The adipose triglyceride lipase (ATGL), protein kinase cAMP-dependent type I regulatory subunit alpha (PKAR I) and other genes related to β-oxidation (peroxisome proliferator activated receptor alpha, PPARα and carnitine O-palmitoyltransferase 1, CPT1) were significantly up-regulated. After feeding a high-fat diet for six weeks, O. niloticus were fed with 0 (control), 0.5 and 1.5 mg/kg forskolin for two weeks to determine whether forskolin could reduce fat accumulation in vivo. Fish fed the two levels of forskolin decreased significantly the hepatosomatic and mesenteric fat indices. The total lipid in the whole fish and liver together with the serum glycerol content were lower in fish fed on forskolin than in the control. The fish fed on forskolin diets exhibited smaller areas of lipid droplets in adipose and liver tissues. Lipolysis related genes (ATGL, hormone-sensitive lipase, HSL; monoacylglycerol lipase, MGL; and protein kinase cAMP-activated catalytic subunit, PKAC) and β-oxidation genes (PPARα; fatty acid binding protein 1, FABP1; and CPT1) in the adipose were up-regulated. Similarly, in the liver lipolysis genes such as ATGL and PKAR I and β-oxidation genes (PPARα, FABP1, CPT1 and acyl-CoA oxidase, ACO) showed an increasing trend with the increase of forskolin doses. This study indicates that forskolin can reduce fat accumulation in the adipose and liver by stimulating lipolysis and β-oxidation in O. niloticus

    Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path

    Get PDF
    Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal

    Die Modulation und Kontrolle neuronaler Gamma‐Band Synchronisierung

    No full text
    Die neuronalen Mechanismen, welche den meisten kognitiven Prozessen zu Grunde liegen, bestehen aus dem Zusammenspiel verschiedener Neuronen-Typen und deren spezifischen Funktionsmechanismen, sowohl in lokalen, als auch in globalen neuronalen Netzwerken. Eine funktionelle Interaktion mit diesen Netzwerken ist unumgänglich um das „kognitive“ Gehirn zu studieren, da neuronale Gruppen in einer hierarchischen, nicht linearen Weise miteinander interagieren, und dabei charakteristische raum-zeitliche Muster aufweisen. In dieser Arbeit untersuchten wir die Struktur und Funktion eines wichtigen Merkmals kortikaler Prozesse: Die neuronale gamma-Band Oszillation

    Gamma-rhythmic gain modulation

    No full text
    Cognition requires the dynamic modulation of effective connectivity, i.e. the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backwards to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation

    Gamma-rhythmic input causes spike output

    No full text
    The gamma rhythm has been implicated in neuronal communication, but causal evidence remains indirect. We measured spike output of local neuronal networks and emulated their synaptic input through optogenetics. Opsins provide currents through somato-dendritic membranes, similar to synapses, yet under experimental control with high temporal precision. We expressed Channelrhodopsin-2 in excitatory neurons of cat visual cortex and recorded neuronal responses to light with different temporal characteristics. Sine waves of different frequencies entrained neuronal responses with a reliability that peaked for input frequencies in the gamma band. Crucially, we also presented white-noise sequences, because their temporal unpredictability enables analysis of causality. Neuronal spike output was caused specifically by the input’s gamma component. This gamma-specific transfer function is likely an emergent property of in-vivo networks with feedback inhibition. The method described here could reveal the transfer function between the input to any one and the output of any other neuronal group

    Cortical resonance selects coherent input

    No full text
    Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We used optogenetics to generate depolarizing currents in pyramidal neurons of cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. Cortex transformed constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increased the strength and frequency of synchronization. Slow, symmetric excitation profiles revealed hysteresis of power and frequency. Crucially, white-noise input sequences enabled causal analysis of network transmission, establishing that cortical resonance selectively transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncovered a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission
    corecore