35 research outputs found

    Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    Get PDF
    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2).yr(-1)), P addition (15 g P m(-2).yr(-1)), and N and P addition (15 + 15 g N and P m(-2).yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests

    Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests

    Get PDF
    Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha(-1) yr(-1)), P addition (150 kg P ha(-1) yr(-1)), and NP addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 +/- 0.7 mu g N2O-N m(-2) h(-1)) than in the mixed (9.9 +/- 0.4 mu g N2O-N m(-2) h(-1)) or pine (10.8 +/- 0.5 mu g N2O-N m(-2) h(-1)) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O emission in N-rich forests, this effect may only occur under high N deposition and/or long-term P addition, and we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales

    Achieving Lightweight Federated Advertising with Self-Supervised Split Distillation

    Full text link
    As an emerging secure learning paradigm in leveraging cross-agency private data, vertical federated learning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, there are two key challenges in applying it to advertising systems: a) the limited scale of labeled overlapping samples, and b) the high cost of real-time cross-agency serving. In this paper, we propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations. We identify that: i) there are massive unlabeled overlapped data available in advertising systems, and ii) we can keep a balance between model performance and inference cost by decomposing the federated model. Specifically, we develop a self-supervised task Matched Pair Detection (MPD) to exploit the vertically partitioned unlabeled data and propose the Split Knowledge Distillation (SplitKD) schema to avoid cross-agency serving. Empirical studies on three industrial datasets exhibit the effectiveness of our methods, with the median AUC over all datasets improved by 0.86% and 2.6% in the local deployment mode and the federated deployment mode respectively. Overall, our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.Comment: Accepted to the Trustworthy Federated Learning workshop of IJCAI2022 (FL-IJCAI22). 6 pages, 3 figures, 3 tables Old title: Semi-Supervised Cross-Silo Advertising with Partial Knowledge Transfe

    Single Amino Acid Substitution in Homogentisate Dioxygenase Affects Melanin Production in Bacillus thuringiensis

    Get PDF
    Bacillus thuringiensis formulation losing its activity under field conditions due to UV radiation and photoprotection of B. thuringiensis based on melanin has attracted the attention of researchers for many years. Here, a single amino acid substitution (G272E) in homogentisate 1,2-dioxygenase was found to be responsible for pigment overproduction in B. thuringiensis BMB181, a derivative of BMB171. Disrupting the gene encoding homogentisate dioxygenase in BMB171 induced the accumulation of the homogentisic acid and provoked an increased pigment formation. To gain insights into homogentisate 1,2-dioxygenase in B. thuringiensis, we constructed a total of 14 mutations with a single amino acid substitution, and six of the mutant proteins were found to affect the melanin production when substituted by alanine. This study provides a new way to construct pigment-overproducing strains by impairing the homogentisate dioxygenase with a single mutation in B. thuringiensis, and the findings will facilitate a better understanding of this enzyme

    Immune Algorithm Complex Method for Transducer Calibration

    No full text
    As a key link in engineering test tasks, the transducer calibration has significant influence on accuracy and reliability of test results. Because of unknown and complex nonlinear characteristics, conventional method can’t achieve satisfactory accuracy. An Immune algorithm complex modeling approach is proposed, and the simulated studies on the calibration of third multiple output transducers is made respectively by use of the developed complex modeling. The simulated and experimental results show that the Immune algorithm complex modeling approach can improve significantly calibration precision comparison with traditional calibration methods

    Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest.

    Get PDF
    The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba Chardn. & Champ. (S.S.) and Castanopsis chinensis Hance (C.C.), were studied using the litterbag technique. Four treatments were conducted at the following levels: control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and NP-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). While N addition significantly decreased the decomposition of both litters, P addition significantly inhibited decomposition of C.C., but did not affect the decomposition of S.S. The negative effect of N addition on litter decomposition might be related to the high N-saturation in this old-growth tropical forest; however, the negative effect of P addition might be due to the suppression of "microbial P mining". Significant interaction between N and P addition was found on litter decomposition, which was reflected by the less negative effect in NP-addition plots than those in N-addition plots. Our results suggest that P addition may also have negative effect on litter decomposition and that P addition would mitigate the negative effect of N deposition on litter decomposition in tropical forests

    Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition:Hypothesis testing

    No full text
    Nitrogen (N) saturation hypothesis suggests that when an ecosystem reaches N-saturation, continued N input will cause increased N leaching, nitrous oxide (N2O) emission, and N mineralization and nitrification rates. It also suggests that a different element will become the main limiting factor when N saturation has been reached. Although this hypothesis has been tested in temperate forests, whether they can be directly applied to N-saturated tropical forests remain poorly addressed. To test this hypothesis, soil inorganic N, soil N mineralization and nitrification rate, soil N2O emission rate and nitrate (inline image) leaching rate were measured in an N-saturated old-growth tropical forest in southern China, after 6 years of N and P addition. We hypothesized that N addition would stimulate further N saturation, but P addition might alleviate N saturation. As expected, our results showed that six continuous years of experimental N addition did cause further N saturation, which was indicated by significant increases in soil inorganic N concentration, N2O emission and nitrate (inline image) leaching. However, in contrast to our expectations, N addition significantly decreased in situ rates of net N mineralization and nitrification, which could be related to associated changes in enzyme activity and microbial community composition. On the other hand, P addition mitigated N saturation, as expected. Soil inorganic N concentration, N2O emission and inline image leaching decreased significantly after P addition, but the net rates of N mineralization and nitrification were significantly increased. Our results provide a new understanding of the N saturation hypothesis, suggesting that the effects of long-term N deposition on net N mineralization and nitrification rates in N-saturated tropical forests can be negative and that P addition can alleviate N saturation in such tropical systems.Data for soil N cycleData-N cycle.xl

    Data from: Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing

    No full text
    Nitrogen (N) saturation hypothesis suggests that when an ecosystem reaches N-saturation, continued N input will cause increased N leaching, nitrous oxide (N2O) emission, and N mineralization and nitrification rates. It also suggests that a different element will become the main limiting factor when N saturation has been reached. Although this hypothesis has been tested in temperate forests, whether they can be directly applied to N-saturated tropical forests remain poorly addressed. To test this hypothesis, soil inorganic N, soil N mineralization and nitrification rate, soil N2O emission rate and nitrate (inline image) leaching rate were measured in an N-saturated old-growth tropical forest in southern China, after 6 years of N and P addition. We hypothesized that N addition would stimulate further N saturation, but P addition might alleviate N saturation. As expected, our results showed that six continuous years of experimental N addition did cause further N saturation, which was indicated by significant increases in soil inorganic N concentration, N2O emission and nitrate (inline image) leaching. However, in contrast to our expectations, N addition significantly decreased in situ rates of net N mineralization and nitrification, which could be related to associated changes in enzyme activity and microbial community composition. On the other hand, P addition mitigated N saturation, as expected. Soil inorganic N concentration, N2O emission and inline image leaching decreased significantly after P addition, but the net rates of N mineralization and nitrification were significantly increased. Our results provide a new understanding of the N saturation hypothesis, suggesting that the effects of long-term N deposition on net N mineralization and nitrification rates in N-saturated tropical forests can be negative and that P addition can alleviate N saturation in such tropical systems
    corecore