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Abstract. Nitrogen (N) deposition is generally considered to
increase soil nitrous oxide (N2O) emission in N-rich forests.
In many tropical forests, however, elevated N deposition has
caused soil N enrichment and further phosphorus (P) defi-
ciency, and the interaction of N and P to control soil N2O
emission remains poorly understood, particularly in forests
with different soil N status. In this study, we examined the
effects of N and P additions on soil N2O emission in an
N-rich old-growth forest and two N-limited younger forests
(a mixed and a pine forest) in southern China to test the
following hypotheses: (1) soil N2O emission is the high-
est in old-growth forest due to the N-rich soil; (2) N ad-
dition increases N2O emission more in the old-growth for-
est than in the two younger forests; (3) P addition decreases
N2O emission more in the old-growth forest than in the two
younger forests; and (4) P addition alleviates the stimulation
of N2O emission by N addition. The following four treat-
ments were established in each forest: Control, N addition
(150 kg N ha−1 yr−1), P addition (150 kg P ha−1 yr−1), and
NP addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1).
From February 2007 to October 2009, monthly quantifica-
tion of soil N2O emission was performed using static cham-
ber and gas chromatography techniques. Mean N2O emis-
sion was shown to be significantly higher in the old-growth
forest (13.9± 0.7 µg N2O-N m−2 h−1) than in the mixed
(9.9± 0.4 µg N2O-N m−2 h−1) or pine (10.8± 0.5 µg N2O-

N m−2 h−1) forests, with no significant difference between
the latter two. N addition significantly increased N2O emis-
sion in the old-growth forest but not in the two younger
forests. However, both P and NP addition had no significant
effect on N2O emission in all three forests, suggesting that P
addition alleviated the stimulation of N2O emission by N ad-
dition in the old-growth forest. Although P fertilization may
alleviate the stimulated effects of atmospheric N deposition
on N2O emission in N-rich forests, this effect may only occur
under high N deposition and/or long-term P addition, and we
suggest future investigations to definitively assess this man-
agement strategy and the importance of P in regulating N
cycles from regional to global scales.

1 Introduction

Nitrous oxide (N2O) is a long-lived (atmospheric lifetime
of approximately 114 years) greenhouse gas that has 298
times the ability of carbon dioxide (CO2) to trap heat in
the atmosphere (Cicerone, 1987; IPCC, 2007). It has been
recognized as a major ozone-depleting substrate in the 21st
century (Ravishankara et al., 2009). According to an esti-
mation by the WMO (2012), atmospheric N2O concentra-
tion increased from 270 ppb during preindustrial periods to
324.2 ppb in 2011. The average emission rate of N2O in-
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creased by approximately 0.73–0.85 ppb yr−1 from 1999 to
2005 (Hirsch et al., 2006; IPCC, 2007) and is predicted to
continue increasing during the following decades (Bouwman
et al., 2013). Global estimations show that soils, including
agricultural soils and soils under natural vegetation, are dom-
inant sources of atmospheric N2O (Hirsch et al., 2006; IPCC,
2007; Bouwman et al., 2013).

Tropical forest soils are important sources of N2O, which
is mainly produced by nitrification and denitrification (IPCC,
2007; Bouwman et al., 2013). On global scales, over half
of the N2O emissions occur in the tropics (D’Amelio et al.,
2009), of which tropical forests account for approximately
14–23 % (IPCC, 2007). Because tropical forest soils are often
rich in N but poor in P, they are less able to retain external N
input (Hall and Matson, 1999). With the greatest increases in
atmospheric N deposition occurring in tropical regions (Gal-
loway et al., 2008), tropical forests have shown a great in-
crease in soil N2O emissions, compared with temperate and
boreal forests (Matson and Vitousek, 1990). Although soil
N2O emission is suggested to be regulated by soil tempera-
ture, moisture, pH, and the availability of nutrients (Werner
et al., 2007; Rowlings et al., 2012), current knowledge on the
factors controlling N2O emission in tropical forests is poor.
This is not only because tropical forests have complicated
structures and functions, as well as great temporal and spa-
tial variations of N2O fluxes (D’Amelio et al., 2009; J. Zhu et
al., 2013), but also because only a small number of studies in
tropical forests is available (Dalal and Allen, 2008; Liu and
Greaver, 2009).

During recent decades, elevated atmospheric N deposition
caused by anthropogenic activities has greatly altered terres-
trial N cycles, reducing N input via biological N fixation and
increasing N losses via NO−3 leaching and N2O emission (Vi-
tousek et al., 1997; Galloway et al., 2004). It is estimated
that reactive N deposition increased from 34 Tg N yr−1 in
1860 to 100 Tg N yr−1 in 1995 and is expected to reach
200 Tg N yr−1 by 2050 globally (Galloway et al., 2008).
Tropical forests are often rich in N, and thus N deposition
into such ecosystems will exceed their capacity for N re-
tention (Aber et al., 1989), leading to rapid N losses via
liquid leaching and gases emission (such as N2, N2O, NO,
NH3, and HONO). There are some field studies showing that
N addition increased N2O emission in forests. For exam-
ple, Hall and Matson (1999) reported significant increases
in soil N2O emission after both short-term and long-term N
addition in two Hawaiian forests. Zhang et al. (2008b) sug-
gested that N addition elevated soil N2O emission more read-
ily in N-rich than N-limited forest. In a secondary tropical
forest, Wang et al. (2014) also found a significant increase
in N2O emission after 3 years of N fertilization. A meta-
analysis by Liu and Greaver (2009) showed that N addition
(10–562 kg N ha−1 yr−1) significantly increased N2O emis-
sion by approximately 216 % across all ecosystems, among
which tropical forests emitted the most.

In contrast to typically N-limited temperate forests, many
tropical forests on highly weathered soils are rich in N but
limited by phosphorus (P) (Vitousek and Matson, 1988; Vi-
tousek et al., 2010). Hall and Matson (1999) reported that P-
limited soils could emit more N2O than N-limited soils after
N addition, suggesting an important role of P in controlling
soil N2O emission. However, to date, studies on P-addition
effects on soil N2O emission have mainly relied on incu-
bation experiments (Sundareshwar et al., 2003; Mori et al.,
2010, 2013; Baral et al., 2014) or have been limited to two
tropical plantations (Mori et al., 2014; Zhang et al., 2014)
and a secondary forest (Wang et al., 2014). Generally, these
studies reported a decrease in soil N2O emission following P
fertilization given the consequent increases in plant N uptake
and/or microbial N immobilization, and thus reduced soil N
availability for N2O production (Sundareshwar et al., 2003;
Baral et al., 2014; Mori et al., 2014; Zhang et al., 2014).
Only Mori et al. (2010, 2013) found a positive response of
N2O emission to P addition, suggesting that P addition may
stimulate soil N cycles and alleviate P limitation on nitrify-
ing and denitrifying bacteria. Other than the studies above,
similar work has not been carried out in other natural tropi-
cal forests. Moreover, in tropical forests with N-rich and P-
limited conditions, the interaction of N and P to control soil
N2O emission remains poorly understood (Hall and Matson,
2003; Wang et al., 2014).

We hypothesize that P addition may reduce soil N2O emis-
sion in tropical forests based on two lines of evidences. First,
in several P-limited tropical forests or plantations, P addi-
tion significantly increased root N uptake capacity (Treseder
and Vitousek, 2001) and aboveground plant N contents (Fer-
nandez et al., 2000; Pampolina et al., 2002; Graciano et al.,
2006). Second, our previous study found that P addition sig-
nificantly increased soil microbial communities (Liu et al.,
2012) and marginally increased microbial biomass N (Liu
et al., 2013) in an N-rich tropical forest. Such findings in-
dicate the potential capacity of P to increase N uptake and
immobilization, thus decreasing N losses in tropical forests.
However, the capacity of P to reduce N losses may be related
to forest development. Despite many tropical forests having
N-rich soils, several younger forests early in soil develop-
ment are still N-limited (Vitousek et al., 1997). Compared
with the old-growth forests, younger forests often show the
higher N demands and utilization of plants and microbes but
the lower rates of soil N cycling, such as mineralization, ni-
trification, and leaching (Aber et al., 1998). In contrast, old-
growth forests have the higher P demand because they are
commonly depleted in P (Vitousek et al., 2010). For example,
a previous study showed that soil microbes and/or tree roots
released more phosphatase in an old-growth forest than in the
younger one (Zheng et al., 2015). Based on this evidence and
considering current knowledge gaps regarding nutrient (N
and P) control of N2O emission in tropical forests, we con-
ducted a randomized factorial-design experiment to investi-
gate the effects of N and P addition on soil N2O emission in
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three tropical forests in southern China: an N-rich old-growth
forest and two N-limited younger forests (a mixed and a pine
forest). We hypothesized that (1) soil N2O emission is the
highest in old-growth forest due to the N-rich soil, (2) N ad-
dition increases N2O emission more in the old-growth for-
est than in the two younger forests, (3) P addition decreases
N2O emission more in the old-growth forest than in the two
younger forests, and (4) P addition alleviates the stimulation
of N2O emission by N addition.

2 Materials and methods

2.1 Site description

This study was conducted in the Dinghushan Biosphere
Reserve (DHSBR), located in the center of Guangdong
Province, southern China (112◦10′ E, 23◦10′ N). The re-
serve occupies an area of approximately 1200 ha and in-
cludes three forests: an old-growth forest and two younger
forests (a mixed broadleaf–pine forest and a pine forest).
The old-growth forest has been well protected from human
disturbance for over 400 years, with major species such
as Castanopsis chinensis Hance, Schima superba Chardn.
& Champ., Cryptocarya chinensis (Hance) Hemsl., Cryp-
tocarya concinna Hance, Machilus chinensis (Champ. ex
Benth.) Hemsl., and Syzygium rehderianum Merr. & Perry
in the tree layer and Calamus rhabdicladus Burret, Ar-
disia quinquegona Bl., and Hemigramma decurrens (Hook.)
Copel. in the understory layer (Wang et al., 1982). The
two younger forests both originated from a 1930s clear-cut
and subsequent pine plantation establishment (Mo et al.,
2006, 2007b). They experienced continuous human distur-
bance (the harvesting of understory and litter) from 1930
to 1956 (mixed forest) and 1998 (pine forest). Because
of the colonization from the natural dispersal of regional
broadleaf species, the mixed forest contains both pine- and
broadleaf-tree species (Mo et al., 2003, 2007b). The mixed
forest is dominated by Pinus (P) massoniana, Schima su-
perba Chardn. & Champ., Castanopsis chinensis Hance,
Craibiodendron kwangtungense S. Y. Hu, Lindera metcalfi-
ana Allen, and Cryptocarya concinna Hance, while the pine
forest is dominated by P. massoniana.

Earlier studies suggested that 22–28 kg N ha−1 yr−1 were
retained in the upper 20 cm soil and the plant biomass
(including canopy trees, understory plants, and forest lit-
ter) in the two younger forests and that a net loss of 8–
16 kg N ha−1 yr−1 mainly via dissolve inorganic N (NH+4 and
NO−3 ) leaching and soil N2O emission occurred in the old-
growth forest (Fang et al., 2008). This indicates N saturation
in the old-growth forest but N limitation in the two younger
ones. Different soil N status is also supported by different
litter decomposition rates, with negative N effects in the old-
growth forest but positive effects in the two younger forests
(Mo et al., 2006). The N-rich status of the old-growth for-

est is also directly supported by its higher foliar N : P ratios
(20.6–36.8) compared with the two younger forests (13.8
in pine forest and 17.8–24.4 in mixed forest; Huang et al.,
2013). However, soil P is deficient in the old-growth forest,
as evidenced by the positive responses of soil CH4 uptake
(Zhang et al., 2011), microbial biomass (Liu et al., 2012) and
live fine-root biomass (F. Zhu et al., 2013) to P addition.

The reserve has a typical humid monsoon climate with
an average annual precipitation of 1927 mm, about 75 % of
which falls from March to August and only 6 % from Decem-
ber to February as reported by our previous studies (Huang
and Fan, 1982; Lu et al., 2013). The mean annual temper-
ature is 21 ◦C, with a January mean temperature of 12.6 ◦C
and July mean temperature of 28.0 ◦C; annual mean relative
humidity is 80 % (Huang and Fan, 1982). Wet inorganic N
deposition was 34, 24, and 26 kg N ha−1 yr−1 in 2004 and
2005 for the old-growth, mixed, and pine forests, respec-
tively, with an additional input of 15–20 kg N ha−1 yr−1 as
dissolved organic N (Fang et al., 2008). All forest soils are
lateritic red earth formed from sandstone, and soil depth is
< 30, 30–60, and > 60 cm in the old-growth, mixed, and pine
forests, respectively (Mo et al., 2003). General soil properties
are listed in Table 1.

2.2 Experimental design

The experiment was established in 2007 with five repli-
cates of each four treatments in each forest: Control (no
fertilization), N addition (150 kg N ha−1 yr−1), P addition
(150 kg P ha−1 yr−1), and NP addition (150 kg N ha−1 yr−1

plus 150 kg P ha−1 yr−1),with a total of 20 plots (5 m× 5 m).
Each plot was surrounded by a 5m wide buffer strip. We
used the high N gradient, about 3 times the atmospheric N
deposition rate, because many soil processes responded sig-
nificantly only under this gradient in the old-growth forest
(Mo et al., 2008; Zhang et al., 2008a; Lu et al., 2010). A
high P gradient was used because of the high P demand of
soil microbes in the old-growth forest (Liu et al., 2012). Al-
though the two younger forests are N-limited, we used sim-
ilar N and P gradients for the main purpose of comparison
among the forests (Zheng et al., 2015; Zhu et al., 2013a).
High fertilization rates can remove all possible N and P con-
straints in both young and old-growth forests (Cleveland and
Townsend, 2006). In addition, plot size and fertilizer level in
our forests were also the same as those studied in Costa Rica
by Cleveland and Townsend (2006). All plots and treatments
were assigned randomly. NH4NO3 and NaH2PO4 solutions
were used as fertilizers and sprayed below the canopy using a
backpack sprayer, bimonthly from February 2007 to October
2009. Fertilizer was weighed and mixed with 5 L of water
for each plot. Each control plot received 5 L of water without
fertilizer.

www.biogeosciences.net/13/3503/2016/ Biogeosciences, 13, 3503–3517, 2016
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Table 1. General characteristics of the 0–10 cm mineral soils in the three study forests.

Forest type Old-growth forest Mixed forest Pine forest

pH value (H2O) 3.9 (0.0)b 4.0 (0.0)a 4.0 (0.1)ab
NH+4 (mg kg−1) 2.4 (0.3)a 1.4 (0.1)b 2.4 (0.0)a
NO−3 (mg kg−1) 4.3 (0.3)a 1.3 (0.2)c 3.3 (0.5)b
Dissolve organic C (mg kg−1) 709.2 (33.7)a 552.3 (13.9)b 573.2 (25.2)b
Soil organic C (%) 4.1 (0.2)a 2.8 (0.2)b 2.9 (0.3)b
Microbial biomass C (mg kg−1) 551.9 (38.5)a 75.9 (7.0)c 165.6 (10.3)b
Available P (mg kg−1) 2.1 (0.4)a 0.9 (0.1)b 1.1 (0.2)b
Total N (g kg−1) 1.6 (0.1)a 1.1 (0.2)b 1.1 (0.1)b
Total P (mg g−1) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0)
N : P ratios 3.2 (0.2)a 2.2 (0.2)b 2.3( 0.3)b

Notes: soil samples were collected in February 2007. Values are means with standard error in parentheses (n= 5).
Different lowercase letters indicate significant differences among forests, as determined by one-way ANOVA
(P < 0.05).

2.3 N2O flux measurement

N2O fluxes were measured from January 2007 before the first
fertilizer application. Two static chambers were installed in
each plot in November 2006, 2 months prior to the gas sam-
pling. The chamber design and measurement method were
adopted from Zhang et al. (2011). Gas fluxes were moni-
tored monthly using a static chamber and a gas chromato-
graph (Agilent 4890D). Each static chamber consisted of an
anchor ring and a removable cover chamber. The anchor ring
was a PVC pipe (25 cm diameter and 16 cm height) perma-
nently anchored in the soil at 8 cm depth. During gas collec-
tion, a removable cover chamber (25 cm diameter and 30 cm
height) was attached tightly to the anchor ring using a rubber
O-ring seal. Gas samples were collected from each cham-
ber from 09:00 to 10:00 LT, during which the greenhouse gas
fluxes are closer to the daily means (Tang et al., 2006). Gas
samples were taken with a 60 mL plastic syringe at 0, 15, and
30 min intervals after the chamber closure. Before each sam-
pling, syringes were flushed three times with chamber gas to
mix the headspace. The gas samples were analyzed within
12 h on a gas chromatograph (Agilent 4890D) fitted with an
electron capture detector (ECD) for N2O. Two stainless steel
columns (pre-column and main column were 1m and 3 m in
length, respectively) packed with Porapak Q were used to
separate N2O. The oven temperature and ECD temperature
were 55 and 330 ◦C, respectively. To avoid the interference
of CO2 from the gas samples, which can lead to an overes-
timation of N2O fluxes as suggested by Zheng et al. (2008),
we used N2 as the carrier gas (flow rate of 35 mL min−1) and
introduced 10 % of CO2 in N2 as the make-up gas (flow rate
of 2 mL min−1) into the ECD (Wang et al., 2010). Through
introducing a high concentration and low flow rate of CO2
into the ECD, the interference of CO2 from the gas samples
is negligible (Wang et al., 2010). Calibration gases (N2O at
321 ppbv, bottle no. 070811) were obtained from the Institute
of Atmospheric Physics, Chinese Academy of Sciences.

The calculation of N2O fluxes followed the method of
Holland et al. (1999), based on the linear regression of
chamber gas concentration with time. Atmospheric pressure
was measured at the sampling sites using an air pressure
gauge (Model THOMMEN 2000, Switzerland). Meanwhile,
air temperature (enclosure), soil temperature (at 5 cm depth),
and moisture (0–10 cm depth) inside each chamber were
measured during each sampling. Soil moisture content was
detected using a TDR probe (Model Top TZS-I, China) and
converted to water-filled pore space (WFPS) according to the
following formula:

WFPS= Vol/(1−SBD/2.65).

SBD: soil bulk density (g cm−3); Vol: volumetric water mois-
ture (%); 2.65 g cm−3 is the assumed particle density in min-
eral soil of forests (Linn and Doran, 1984). It is possible that
the particle density value may be different between forest
types (old-growth vs. younger forests), but we focused on
the comparison between treatments in this study, so this case
is of minor importance.

2.4 Soil sample analyses

Soil sampling was conducted in February 2007 (before the
first fertilizer application), August 2007, February 2008, Au-
gust 2008, February 2009, and August 2009. Five soil cores
(2.5 cm inner diameter) were collected randomly from 0 to
10 cm soil depths and mixed by plot. Soil pH was measured
in a soil–water (1:2.5) suspension. Soil organic carbon (C)
was measured using dichromate oxidation and titration with
ferrous ammonium sulfate (Liu et al., 1996). Soil microbial
biomass C was measured using the chloroform fumigation-
extraction method (Vance et al., 1987). Soil dissolved or-
ganic C was extracted with 0.5 M K2SO4 and analyzed
using a total carbon analyzer (Shimadzu model TOC-500,
Kyoto, Japan). Total N concentration was measured using
semimicro-Kjeldahl digestion followed by the detection of
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M. Zheng et al.: Effects of N and P additions on N2O fluxes 3507

 

10

15

20

25

30

  

 

 C
 N
 P
 NP

Old-growth forest

10

15

20

25

30

 

Mixed forest

 

S
o

il
 t

em
p

er
at

u
re

 (
o C

)

Ja
n.

 2
00

7

F
eb

. 2
00

7

M
ar

. 2
00

7

A
pr

. 2
00

7

M
ay

. 2
00

7

Ju
n.

 2
00

7

Ju
l. 

20
07

A
ug

. 2
00

7

S
ep

. 2
00

7

O
ct

. 2
00

7

N
ov

. 2
00

7

D
ec

. 2
00

7

Ja
n.

 2
00

8

F
eb

. 2
00

8

M
ar

. 2
00

8

A
pr

. 2
00

8

M
ay

. 2
00

8

Ju
n.

 2
00

8

Ju
l. 

20
08

A
ug

. 2
00

8

S
ep

. 2
00

8

O
ct

. 2
00

8

N
ov

. 2
00

8

D
ec

. 2
00

8

Ja
n.

 2
00

9

F
eb

. 2
00

9

M
ar

. 2
00

9

A
pr

. 2
00

9

M
ay

. 2
00

9

Ju
n.

 2
00

9

Ju
l. 

20
09

A
ug

. 2
00

9

S
ep

. 2
00

9

O
ct

. 2
00

9

10

15

20

25

30

  

 

Pine forest

 

Figure 1. Monthly soil temperature in the three study forests of Dinghushan Biosphere Reserve (DHSBR) from January 2007 to October
2009.

ammonium on a Wescan ammonia analyzer, and total P con-
centration was measured spectrophotometrically after acidi-
fied ammonium persulfate digestion (Anderson and Ingram,
1989). Soil available P was measured spectrophotometrically
after extraction with an acid–ammonium fluoride solution
(Liu, 1996). Soil NH+4 -N was measured spectrophotometri-
cally by the indophenol blue method after extraction with a
potassium chloride solution (Liu, 1996).

The soil nitrification rate was measured according to the
in situ incubation method described by Raison et al. (1987).
Briefly, 10 soil cores (2.5 cm inner diameter) were collected
from each plot, 5 of which were brought to the laboratory for
measurement of soil NO−3 -N using cadmium reduction fol-
lowed by sulfanilamide–NAD reaction, and the remainders
were returned to the plots for 1 month incubation. The ni-
trification rate was calculated from the difference between
extractable NO−3 -N contents before and after incubation.

2.5 Statistical analyses

Repeated-measures analysis of variance was used to examine
the effect of fertilizer treatments on soil N2O emission and
soil properties from February 2007 to October 2009. Two-
way ANOVA was used to determine the treatment effects on
soil N2O emission. One-way ANOVA was used to determine
the differences in soil properties among treatments for each
sampling. Linear regression analyses were used to determine

the relationships between N2O emission and soil WFPS or
soil temperature in each forest. Data were tested for normal-
ity (Kolmogorov–Smirnov test) and equality (Levene’s test)
of variances and were log-transformed for analysis if they did
not meet the requirements of normality or equality of vari-
ances. All analyses were conducted using the SPSS 16.0 for
windows (SPSS Inc., Chicago, IL, USA). Statistically signif-
icant differences were recognized at P < 0.05, unless other-
wise stated.

3 Results

3.1 Soil temperature

Soil temperature (at 5 cm depth) showed a similar pattern
in all plots across the three forests, increasing from spring
to summer and decreasing from fall to winter (Fig. 1).
The mean soil temperature of the control plots during the
study period was 21.8± 0.4, 22.6± 0.4, and 23.4± 0.4 ◦C
in the old-growth, mixed, and pine forests, respectively.
Repeated-measures ANOVA highlighted significant differ-
ences (P < 0.001) in soil temperatures between each for-
est. In the mixed forest, soil temperature was significantly
lower in P-addition plots (P = 0.043) compared to the con-
trol plots, while N and NP addition had no effect on soil
temperature. No treatment effect was detected on soil tem-
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Figure 2. Monthly soil WFPS in the three study forests of Dinghushan Biosphere Reserve (DHSBR) from January 2007 to October 2009.

perature in the old-growth and pine forests, as determined by
repeated-measures ANOVA.

3.2 Soil WFPS

Soil WFPS (0–10 cm depth) increased in all forests from
dry winter to wet spring but decreased in summer, possi-
bly due to the higher plant uptake and transpiration, de-
spite the high amount of precipitation in summer (Fig. 2).
Mean soil WFPS in control plots during the study period was
31.1± 1.1, 29.5± 1.2, and 28.3± 1.2 % in the old-growth,
mixed, and pine forests, respectively. Repeated-measures
ANOVA showed no significant difference of soil WFPS in
the control plots among three forests. N, P, and NP addition
had no significant effect on soil WFPS in any forest, as de-
termined by repeated-measures ANOVA.

3.3 Soil properties

Repeated-measures ANOVA showed that soil pH signifi-
cantly increased after P addition in the old-growth forest (Ta-
ble 2). Soil NO−3 concentrations significantly decreased after
P addition in the old-growth and mixed forests and signifi-
cantly increased after N addition in the pine forest. Soil NH+4
concentrations and total inorganic N (NH+4 + NO−3 ) concen-
trations had no response to either N or P addition in any for-
est. Soil available P concentrations significantly increased af-
ter P addition in all the forests. Soil organic C significantly

increased after N addition in the mixed and pine forests but
not in the old-growth forest. Soil microbial biomass C signif-
icantly increased after P addition in the old-growth forest and
after N addition in the mixed forest. Interaction of combined
N and P additions occurred in soil available P concentrations
and microbial biomass C in the old-growth forest and in soil
pH and NO−3 concentrations in the mixed forest.

3.4 Soil N2O emission in control plots

Soil N2O emission was higher in all forests during spring and
summer and lower in fall and winter (Fig. 3). Mean soil N2O
emission was 14.0± 0.7, 9.9± 0.4, and 10.9± 0.5 µg N2O-
N m−2 h−1 in the old-growth, mixed, and pine forests, re-
spectively (Fig. 4), being significantly higher in the old-
growth forest than in the mixed (P = 0.001) and pine
(P = 0.005) forests. In the control plots, soil temperature and
WFPS showed a significant positive linear relationship with
soil N2O emission (Fig. 5) and explained 9–17 and 12–23 %
of N2O fluxes variation across the forests (Table 4). The mod-
els that included soil temperature and WFPS as parameters
showed the higher R2 values (22–28 %; Table 4).

3.5 Soil N2O emission after N and P addition

Effects of N and P addition on soil N2O emission var-
ied with forest type (Fig. 4). In the old-growth for-
est, mean N2O emission during the study period was
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Table 2. Effects of N and P addition on soil properties in the three study forests.

Repeated-measures
Statistical analyses ANOVA

Treatment C N P NP N P N×P

pH 3.9 (0.0) 3.9 (0.0) 4.0 (0.0) 3.9 (0.0) ns ∗∗ ns
NH+4 (mg kg−1) 8.7 (0.8) 10.1 (0.9) 9.7 (0.8) 10.2 (1.2) ns ns ns

Old-growth NO−3 (mg kg−1) 5.9 (0.6) 6.6 (0.8) 4.5 (0.8) 3.5 (0.5) ns ∗∗ ns
forest NH+4 + NO−3 (mg kg−1) 14.6 (1.1) 16.7 (1.5) 14.2 (1.2) 13.8 (1.4) ns ns ns

Available P (mg kg−1) 1.4 (0.2) 2.7 (0.6) 8.7 (1.4) 5.8 (1.0) ns ∗∗ ∗

Soil organic C (%) 4.1 (0.2) 4.6 (0.2) 4.8 (0.1) 4.4 (0.2) ns ns ns
MBC (mg kg−1) 434.3 (42.7) 359.9 (41.2) 422.6 (44.9) 488.6 (60.0) ns ∗ ∗

pH 4.0 (0.0) 4.1 (0.0) 4.1 (0.0) 4.0 (0.0) ns ns ∗

NH+4 (mg kg−1) 8.4 (0.9) 8.9 (0.9) 8.9 (0.9) 9.0 (0.9) ns ns ns
Mixed NO−3 (mg kg−1) 1.9 (0.3) 1.8 (0.3) 1.2 (0.2) 1.8 (0.3) ns ∗ ∗∗

forest NH+4 + NO−3 (mg kg−1) 10.3 (1.1) 10.7 (1.0) 10.1 (1.0) 10.8 (1.0) ns ns ns
Available P (mg kg−1) 1.4 (0.2) 3.7 (0.8) 7.2 (1.3) 5.7 (1.1) ns ∗∗ ns
Soil organic C (%) 2.4 (0.1) 2.8 (0.1) 2.7 (0.1) 2.9 (0.1) ∗ ns ns
MBC (mg kg−1) 239.7 (23.6) 254.5 (25.69) 240.5 (31.9) 291.5 (31.8) ∗ ns ns

pH 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) ns ns ns
NH+4 (mg kg−1) 8.8 (0.7) 8.5 (1.0) 8.3 (0.9) 8.9 (1.1) ns ns ns
NO−3 (mg kg−1) 2.9 (0.4) 3.2 (0.4) 2.3 (0.4) 3.2 (0.4) ∗ ns ns

Pine forest NH+4 + NO−3 (mg kg−1) 11.7 (1.0) 11.7 (1.2) 10.6 (1.1) 12.1 (1.2) ns ns ns
Available P (mg kg−1) 1.9 (0.4) 1.5 (0.4) 7.7 (1.4) 7.2 (1.4) ns ∗∗ ns
Soil organic C (%) 3.3 (0.1) 3.6 (0.2) 3.4 (0.1) 3.9 (0.2) ∗ ns ns
MBC (mg kg−1) 306.2 (41.1) 274.3 (40.7) 260.2 (33.1) 268.2 (34.7) ns ns ns

Notes: soils were sampled in August 2007, February 2008, August 2008, February 2009, and August 2009. February and August are within the dry and wet season,
respectively, in the study region. Values shown in Table 2 are means (all sampling periods) with standard error in parentheses (n= 25), and the values of each
sampling period are shown in Tables S2–S4 in the Supplement. MBC: microbial biomass carbon. “∗∗”, “∗”, and “ns” represent statistical difference of P < 0.01,
P < 0.05, and P > 0.05, respectively.

Table 3. P value of two-way repeated-measures ANOVA of seasonal N2O fluxes in the three study forests.

Seasons Spring 2007 Summer 2007 Fall 2007 Winter 2008 Spring 2008 Summer 2008 Fall 2008 Winter 2009 Spring 2009 Summer 2009

Old-growth forest

N 0.001 0.470 0.048 0.021 0.631 0.761 0.029 0.253 0.567 0.775
P 0.328 0.519 0.552 0.265 0.383 0.931 0.090 0.356 0.524 0.052
N×P 0.531 0.748 0.556 0.034 0.751 0.519 0.782 0.565 0.202 0.172

Mixed forest

N 0.881 0.667 0.253 0.017 0.304 0.866 0.609 0.446 0.989 0.349
P 0.601 0.948 0.462 0.128 0.522 0.649 0.570 0.958 0.277 0.102
N×P 0.721 0.487 0.084 0.043 0.814 0.440 0.470 0.089 0.509 0.711

Pine forest

N 0.027 0.101 0.934 0.255 0.612 0.793 0.045 0.907 0.762 0.651
P 0.559 0.117 0.152 0.600 0.743 0.875 0.898 0.234 0.912 0.410
N×P 0.491 0.024 0.163 0.431 0.685 0.194 0.400 0.097 0.834 0.434

Notes: spring from April to June, summer from July to September, fall from October to December, and winter from January to March. P values that are less than 0.1 are marked by bold type.

24.7 % higher in the N-addition plots (17.4± 1.1 µg N2O-
N m−2 h−1), not significantly different in the P-addition plots
(14.0± 0.8 µg N2O-N m−2 h−1), and 13.9 % higher in the
NP-addition plots (15.9± 0.9 µg N2O-N m−2 h−1) compared
to the control plots (14.0± 0.7 µg N2O-N m−2 h−1). How-
ever, significant differences were confined to the N-addition

treatment (P = 0.036). In the mixed forest, mean N2O emis-
sion slightly increased by 0.7, 8.0, and 3.9 % after N, P,
and NP addition, respectively. In the pine forest, N and NP
addition slightly increased mean N2O emission by 1.1 and
14.7 %, respectively, while P addition marginally decreased
mean N2O emission by 2.5 %. In the mixed and pine forest,
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Figure 3. Seasonal variation of N2O fluxes in the three study forests during the sampling periods. Each error bar represents standard error
of mean N2O fluxes from five plots (n= 5), and the data of N2O fluxes in each plot have been averaged by season (3 months). Differ-
ent lowercase letters within each season represent significant differences among treatments, as determined by repeated-measures ANOVA
(P < 0.05).

Table 4. Models for the relationships between N2O fluxes (N2O), soil WFPS (W), and temperature (T ) in the control plots of the study
forests.

Parameters Forest type Regression models P value R2 n

N2O, W Old-growth forest N2O= 0.22×W+ 6.80 < 0.001 0.12 169
Mixed forest N2O= 0.13×W+ 5.77 < 0.001 0.18 168
Pine forest N2O= 0.20×W+ 5.15 < 0.001 0.23 168

N2O, T Old-growth forest N2O= 0.79× T − 3.61 < 0.001 0.17 169
Mixed forest N2O= 0.32× T+ 2.45 < 0.001 0.11 168
Pine forest N2O= 0.39× T+ 1.58 < 0.001 0.09 169

N2O, W, T Old-growth forest N2O= 0.64× T+ 0.14×W−4.75 < 0.001 0.22 169
Mixed forest N2O= 0.22× T+ 0.11×W+ 1.53 < 0.001 0.22 168
Pine forest N2O= 0.28× T+ 0.18×W−0.86 < 0.001 0.28 168

no significant differences among treatments were identified
by repeated-measures ANOVA.

Two-way ANOVA highlighted the significant positive ef-
fects of N addition on N2O emission in spring 2007, fall
2007, winter 2008, and fall 2008 and the marginal negative
effects of P addition in fall 2008 and summer 2009 in the old-
growth forest (Table 3). In contrast, only a significant posi-
tive effect of N addition occurred in winter 2008 in the mixed
forest and in spring 2007 and fall 2008 in the pine forest.
Interactive effects (P < 0.1) of combined N and P additions
occurred in the old-growth (winter 2008), mixed (fall 2007,

winter 2008, and winter 2009), and pine (summer 2007, win-
ter 2009) forests.

3.6 Soil nitrification rate

In the old-growth forest, N addition significantly increased
the soil nitrification rate (P = 0.005), while P and NP addi-
tion had no significant effect (Fig. 6). In the mixed and pine
forest, the soil nitrification rate was not affected by N and/or
P addition.
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Figure 4. Effects of N and P addition on mean soil N2O fluxes from
February 2007 to October 2009. Each error bar represents standard
error of mean N2O fluxes from five plots (n= 5), and the data of
N2O fluxes in each plot have been averaged from the whole sam-
pling period (33 months). Different lowercase letters within each
forest represent significant differences among treatments, as deter-
mined by repeated-measures ANOVA (P < 0.05).

4 Discussion

4.1 N2O emission in control plots

Soil N2O emissions measured in the present study (9.9–
13.9 µg N2O-N m−2 h−1) were comparable to previous re-
ports from tropical forests (10.0–11.5 µg N2O-N m−2 h−1;
Kiese et al., 2008; Sousa Neto et al., 2011). However,
our results were lower than those from adjacent forests
(24.1–69.0 µg N2O-N m−2 h−1; Tang et al., 2006; Zhang et
al., 2008b) and other tropical forests (16.3–77.1 µg N2O-
N m−2 h−1; Kiese et al., 2008; Davidson et al., 2008; Konda
et al., 2010) and higher than those from many tropical or
subtropical forests (1.0–8.7 µg N2O-N m−2 h−1; Hall et al.,
2004; Werner et al., 2006; Wang et al., 2010; Wieder et al.,
2011). Taken together, these data suggest a high variation in
N2O emission among different study regions, possibly due to
the difference in soil types and/or climatic conditions.

As expected, a generally higher seasonal N2O emission
and a significantly higher mean N2O emission were identi-
fied in the old-growth forest than in the two younger forests
(Figs. 3 and 4), suggesting that N2O emission may vary de-
pending on forest type. N2O emission has been suggested
to increase with succession (Verchot et al., 1999; Erickson
et al., 2001), possibly due to the increase in soil N content
(Erickson et al., 2002). For example, soil N enrichment due
to the presence of N-fixing legume trees has been linked
with higher N2O emission (Erickson et al., 2002; Arai et
al., 2008; Konda et al., 2010; Zhang et al., 2014). In addi-
tion, higher N2O emission in N-rich soils has been reported
by a study in adjacent forests with different soil N status
(Zhang et al., 2008b). These findings are consistent with our
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 Figure 5. Relationships between N2O fluxes and soil WFPS (and
temperature) in the five control plots of the study forests, as deter-
mined by linear regression analyses. Coefficients of the regression
lines are listed in Table 4.

results in that the old-growth forest had higher inorganic N
(NH+4 and NO−3 ) and total N content than the mixed and
pine forests (Table 1). Given almost complete saturation of
N in this old-growth forest, investigated previously by Fang
et al. (2008), excess N in soils would be readily lost as dis-
solved organic and inorganic N (Fang et al., 2008, 2009) and
N2O gas (Zhang et al., 2008b). Thus, our results further con-
firm that N-rich forests have a higher N2O emission than N-
limited forests.

In addition to soil N status, soil pH and the availability of
other nutrients may account for higher N2O emission in the
old-growth forest. Compared to the younger forests, the old-
growth forest had more acid soil conditions (Tables 1 and
2), likely supporting the higher chemo-denitrification (Tate,
1995; Chalk and Smith, 1983; Mørkved et al., 2007). Addi-
tionally, the old-growth forest had significantly higher soil
dissolved organic C and total organic C (Table 1), which
could provide more C energy for N2O production (Zhang et
al., 2014). N-rich and P-limiting conditions have also been
suggested to support higher N2O emission (Zhang et al.,

www.biogeosciences.net/13/3503/2016/ Biogeosciences, 13, 3503–3517, 2016
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 Figure 6. Effects of N and P addition on soil nitrification rate in the
three study forests in August 2008. Error bars represent standard er-
rors (n= 5). Different lowercase letters within each forest represent
significant differences among treatments, as determined by one-way
ANOVA (P < 0.05).

2008b). In the present study, soil N : P ratios were signifi-
cantly higher in the old-growth forest than in the mixed and
pine forest (Table 1), suggesting that the low availability of
soil P may intensify N2O emission under N-rich conditions
(Zhang et al., 2014), thus indicating the potential interaction
of N and P to control N2O emission.

4.2 Effects of soil temperature and WFPS on N2O
emission

Overall, soil temperature increased from spring to sum-
mer but decreased from fall to winter in all the forest
plots (Fig. 1). N2O emission was positively correlated to
soil temperature in all three forests (Table 4 and Fig. 5),
which was consistent with previous studies in tropical forests
(Butterbach-Bahl et al., 2004; Zhang et al., 2008b; Zhu et
al., 2013b; Zhang et al., 2014). However, mean soil temper-
ature was highest in the pine forest, followed by the mixed
and old-growth forests (statistical difference of P < 0.001 be-
tween each forest), which was inconsistent with the patterns
of mean N2O emission identified across forests (being sig-
nificantly higher in the old-growth forest than in the mixed
(P = 0.001) and pine (P = 0.005) forests; Fig. 4). This sug-
gests a limited ability of soil temperature to explain the pat-
tern in N2O emission across forests with different soil N sta-
tus.

Compared to the models with soil temperature and N2O
fluxes as parameters, the R2 values of the models with soil
WFPS and N2O fluxes as parameters were not much higher
(Table 4). However, mean soil WFPS showed comparable
dynamics to mean N2O emission, with the highest WFPS in
the old-growth forest and the lowest WFPS in the pine forest
(Fig. 2). In each forest, soil WFPS showed a positive rela-
tionship with N2O emission (Fig. 5), as has previously been

observed across forests with different soil N status (Zhang et
al., 2008b, 2014). Moreover, seasonal patterns in soil WFPS
(Fig. 2) and N2O emission were comparable in all forests
(Fig. 3), suggesting that soil WFPS can predict the seasonal
variance of N2O emission, as follows. In spring, forest soil
was enriched with inorganic N (accumulated during non-
growing seasons mainly due to the lack of rainfall; Mo et al.,
2003) and had higher WFPS (increased in wet seasons), con-
ditions that would generate a pulsing effect because wetting
dry soil will trigger emissions of N2O and other nitrogenous
gases by stimulating microbial consumption of soil NH+4
and/or NO−3 (Davidson et al., 2000; Butterbach-Bahl et al.,
2004; Werner et al., 2006). In summer, N2O emission be-
gan to decrease given decreasing soil WFPS (Fig. 3) possibly
caused by the higher plant uptake and transpiration (Cheng et
al., 2015). In fall and winter, both the lower soil inorganic N
(decreased after growing seasons; Mo et al., 2003) and WFPS
(decreased in dry seasons) suppressed N2O production. Ac-
cordingly, N2O emission was highest in spring, declined in
summer, and was lowest in fall and winter (Fig. 3). Thus, our
findings suggest that soil WFPS may be a more appropriate
predictor of N2O emission in forests with different soil N
status than soil temperature.

4.3 Effects of N addition on N2O emission

As expected, N addition significantly increased mean N2O
emission in the old-growth forest but not in the mixed and
pine forests (Fig. 4), which was consistent with the results
from adjacent forests (Zhang et al., 2008b). In several N-rich
forests, N2O emission significantly increased after N addi-
tion (Hall and Matson, 1999; Venterea et al., 2003; Koehler
et al., 2009; Zhang et al., 2014), whereas it was hardly im-
pacted by N input in the N-limited forests (Davidson et al.,
2000; Skiba et al., 2004) or only increased after chronic N
addition (Magill et al., 2000; Hall and Matson, 2003). This
indicates an important control of N2O emission by soil N sta-
tus (Zhang et al., 2008b), as explained below.

As supported by our results, additional N inputs to N-rich
forests exceed the ecosystems capacity for N retention, and
thus less N is utilized (Aber et al., 1998). In the old-growth
forest, we found no increase in soil organic C, microbial
biomass C (Table 2) or litter decomposition rate (Mo et al.,
2006) after N addition, whereas live fine-root biomass was
shown to decrease (Zhu et al., 2013a), suggesting that N ad-
dition no longer increases soil and plant C pools in this forest.
Moreover, the N fertilizer application rate was much larger
than the atmospheric N deposition rate, leading to excess soil
N accumulating in the old-growth forest, which would favor
nitrifying and denitrifying bacteria (Zhang et al., 2008b) and
therefore significantly stimulate soil nitrification rate (Fig. 6),
N2O emission (Fig. 4), and NO−3 leaching (Fang et al., 2009).
As a result, no significant increase in soil inorganic N (NH+4
and NO−3 ) was observed after N addition in the old-growth
forest (Table 2). Thus, in combination with previous findings,
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our results confirm that N addition will increase N2O emis-
sion in N-rich forests.

In contrast, in N-limited forests, N is retained to support
plant and microbial growth and/or the accumulation of soil
organic matter (Aber et al., 1998; Harrington et al., 2001). In
the mixed and pine forests, two N-limited ecosystems (Mo
et al., 2006), despite no significant increase in soil total in-
organic N following N addition, a significant increase in soil
microbial biomass C and soil organic C was observed in the
mixed forest, as well as a significant increase in soil organic
C in the pine forest (Table 2). Both forests showed positive
responses of litter decomposition rate to N addition (Mo et
al., 2006), but no net N losses via NO−3 leaching (Fang et
al., 2008). In addition, our previous study showed that un-
der atmospheric N deposition, the N retention in the two
forests was in accordance with the estimates of N accumu-
lation in plant biomass and litter increment (Mo et al., 2004,
2007a; Fang et al., 2008), suggesting that the N retention
was mainly used for plant growth rather than gaseous N loss.
In this study, although we did not measure other gas losses
(such as NH3, NO, HONO, and NO2), which are also impor-
tant in forest soils, we found that N2O emission showed no
response to N addition in either forest (Fig. 4), and the ni-
trification rate did not change (Fig. 6). Although rates of N
addition in the present study were much higher than atmo-
spheric N deposition, all the evidence above suggests that N
continues to be utilized rather than that it is emitted via N2O
gases following N addition in our N-limited forests. Further
studies are needed to examine whether N addition increases
other nitrogenous gas loss in the N-limited forests.

4.4 Effects of P addition on N2O emission

No significant change in mean N2O emission was observed
following P addition in any of the study forests (Fig. 4), al-
lowing us to reject the hypothesis that P addition causes a
greater decrease in N2O emission in the old-growth forest
than in two younger forests. This finding was inconsistent
with many previous studies conducted in situ (Mori et al.,
2014; Zhang et al., 2014) or in laboratories (Sundareshwar et
al., 2003; Mori et al., 2010, 2013; Baral et al., 2014). For ex-
ample, Mori et al. (2014) and Zhang et al. (2014) reported
that P addition significantly decreased N2O emission in a
leguminous and non-leguminous plantation. Under labora-
tory conditions, Sundareshwar et al. (2003) found a negative
response of sediment N2O emission to phosphate addition.
Based on a pot experiment with maize, Baral et al. (2014)
also suggested that alleviation of P limitation would decrease
N2O emission. The major mechanism of this P-driven de-
crease in N2O emission is the increased plant uptake of soil
N due to higher P availability, which therefore reduces N
availability for nitrifying and denitrifying bacteria (Mori et
al., 2010). However, several incubation experiments found
a positive response of N2O emission to P addition (Mori
et al., 2010, 2013), with authors suggesting that P addition

might stimulate soil N cycles for nitrification and denitrifica-
tion and/or might alleviate soil P limitation of nitrifying and
denitrifying bacteria. In contrast, a lack of response of N2O
emission to P addition has rarely been reported, especially
for natural forests (Wang et al., 2014), and the mechanism
remains poorly understood.

Based on the present study, we propose that a lack of re-
sponse of N2O emission to P addition may be attributed to
failure of soil N immobilization or N uptake stimulated by
the short-term P addition. P fertilization has been suggested
to decrease soil N substrates (or increase soil N immobiliza-
tion) and thus suppress N2O production (Sundareshwar et
al., 2003; Mori et al., 2010, 2014; Zhang et al., 2014). How-
ever, we found no significant change in soil total inorganic N
(NH+4 plus NO−3 ) after P addition in all forests, despite a sig-
nificant decrease in NO−3 in the old-growth and mixed forests
(Table 2). Moreover, the soil nitrification rate remained sta-
ble after P addition in all forests (Fig. 6), suggesting that P
addition did not affect N2O production in the present study.
Yet, in a recent study, significant decreases in soil inorganic
N and N2O emission occurred after 6 years of P addition in
an old-growth forest (Chen et al., 2015), indicating that N2O
emission may remain stable following short-term P addition
but decrease after long-term addition in N-rich forests. We
further suggest studies to identify whether long-term P addi-
tion will also decrease N2O emission in N-limited forests.

4.5 Effects of combined N and P additions on N2O
emission

Consistent with our hypothesis, mean N2O emission showed
no response to combined N and P additions in all forests
(Fig. 4), suggesting that P alleviated the stimulating effect
of N addition on N2O emission in the old-growth forest, as
has been reported by several previous studies. For example,
Hall and Matson (2003) reported that N addition significantly
increased soil N2O emission but N and P addition had no
effect in a P-limited forest. Using a pot experiment, Baral
et al. (2014) found that N2O emission was highest under
N fertilization treatment but reduced after P fertilization in
a P-limited soil–sand mixture. Zhang et al. (2014) also re-
ported that N2O emission significantly increased with N ad-
dition but not with NP addition in a leguminous plantation.
However, our results were inconsistent with those of Mori et
al. (2013) and Wang et al. (2014), who suggested that both N
and NP addition significantly increased N2O emission.

Currently, two mechanisms of the P alleviation of N2O
emission are plausible. First, P addition may alleviate P lim-
itation of plants and thus increase plant uptake of N (Hall
and Matson, 1999; Baral et al., 2014; Sundareshwar et al.,
2003). Second, P addition may alleviate P limitation of soil
microbes and therefore increase microbial N immobilization
(Sundareshwar et al., 2003). Both pathways will reduce soil
N substrates available for N2O production. Although plant
and microbial N contents were not measured in this study,
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our recent study in the old-growth forest found no effect of 5
years of P and NP addition on fine-root N contents (Zhu et al.,
2013a). P addition likely alleviated the P limitation on soil
microbes in our old-growth forest because our previous study
showed that P addition significantly increased soil microbial
biomass and soil respiration (Liu et al., 2012). Compared
with the controls, P addition changed soil microbial com-
munity, including the increases in biomass of bacteria and
arbuscular mycorrhizal (AM) fungi (Liu et al., 2012, 2013).
The increases in AM fungi may help plants acquire more N
and P nutrients (Tresede and Vitousek, 2001) because they
are more efficient in obtaining nutrients from the soil than
the plant roots (Liu et al., 2013). In addition, the increases in
bacterial and fungal biomass may potentially increase total
N acquirement, as evidenced by our previous study showing
that 4 years of P and NP addition tended to increase soil mi-
crobial biomass N (Liu et al., 2013). Accordingly, P allevia-
tion of the N stimulation on N2O emission in our old-growth
forest was likely attributed to an increase in microbial N im-
mobilization. NP addition did not significantly affect soil to-
tal inorganic N (NH+4 plus NO−3 ; Table S2) and thus the soil
nitrification rate (Fig. 6), which in turn did not affect N2O
emission.

It is interesting that the soil N2O emission reduced
after P addition compared with that after N addition
(150 kg N ha−1 yr−1) but not when compared with that un-
der atmospheric N deposition (∼ 50 kg N ha−1 yr−1). We in-
fer that this may be related to the levels of N addition and/or
the period of P addition. First, it is possible that low N ad-
dition, such as atmospheric N deposition in our study, may
not cause a significant increase in soil N2O emission in this
N-rich forest. Our previous study showed that under atmo-
spheric N deposition (49.5 kg N ha−1 yr−1), soil had higher
N leaching (59.8 kg N ha−1 yr−1) in this N-rich forest, sug-
gesting a net N loss under atmospheric N deposition (low
N input) and thus less N retained for N2O production (Fang
et al., 2008). Accordingly, it is possible that low N addition
failed to increase soil N2O emission in the N-rich forest, and
thus P addition may show no alleviated effect. Second, a lack
of response of N2O emission to P addition compared with
the control may also be related to the P fertilization period.
Nutrient (N and P) addition in our study was only applied for
about 2 years, and we did not observe the alleviated effect of
P addition on soil N2O emission under atmospheric N depo-
sition (Figs. 3 and 4). However, our recent study in the same
forest found that long-term (6 years) P addition significantly
decreased soil N2O emission compared with the control (at-
mospheric N deposition; Chen et al., 2015). This suggests
that the fertilization period is also an important factor affect-
ing the alleviated effect of P addition on N2O emission in this
N-rich forest. Therefore, our findings suggest that P addition
will alleviate the stimulating effects of N on N2O emission in
the N-rich forest, but this effect may only occur under high
N addition and/or long-term P addition.

5 Conclusions

To our knowledge, this is the first study to examine how N
and P interact to control soil N2O emission in tropical forests
with different soil N status. Our results confirm that N-rich
forests have higher N2O emission than N-limited forests,
and N addition will merely increase N2O emission in N-rich
forests, as less N is utilized in N-rich soils. However, neither
P nor NP addition affects N2O emission in both N-rich and
N-limited forests, which suggests that P addition potentially
alleviates N stimulation of N2O emission in N-rich forests,
with the potential mechanism of microbial N immobilization,
but this alleviated effect may only occur under high N addi-
tion and/or long-term P addition. Therefore, P fertilization
can be used to reduce soil N2O emission in N-rich forests
under atmospheric N deposition, but we suggest more inves-
tigations to definitively assess this management strategy and
the importance of P in regulating N cycles from regional to
global scales.

The Supplement related to this article is available online
at doi:10.5194/bg-13-3503-2016-supplement.
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