16 research outputs found

    Tunable broadband photoluminescence from bismuth‐doped calcium aluminum germanate glasses prepared in oxidizing atmosphere

    Get PDF
    Tunable photoluminescence (PL) from transparent inorganic glass matrices is of interest for applications demanding a semitransparent photoconverter that does not elastically scatter incoming light. For this purpose, bismuth (Bi)‐doped optical materials exhibit unique spectral characteristics in terms of bandwidth and emission tunability. Here, we demonstrate a facile route for preparing such converters from Bi‐doped calcium‐aluminate and calcium‐aluminogermanate glasses. These glasses offer tunable PL across the near violet and visible‐to‐near‐infrared (NIR) spectral range, with an emission lifetime in the range of 300 μs. The addition of GeO 2 exerts a decrease in optical basicity, which in turn enables the stabilization of NIR‐active low‐valence Bi species for broadband NIR PL

    Analysis of the Damping Characteristics of Cylindrical Resonators Influenced by Piezoelectric Electrodes

    No full text
    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is mostly influenced by the damping characteristic of the cylindrical resonator. However, the tremendous damping influences caused by pasting piezoelectric electrodes on the gyroscope, which degrades the performance to a large extent, have rarely been studied. In this paper, the dynamical model is established to analyze various forms of energy consumption. In addition, a FE COMSOL model is also created to discuss the damping influences of several significant parameters of the adhesive layer and piezoelectric electrodes, respectively, and then explicit influence laws are obtained. Simulation results demonstrate that the adhesive layer has some impact on the damping characteristic, but it not significant. The Q factor decreases about 30.31% in total as a result of pasting piezoelectric electrodes. What is more, it is discovered that piezoelectric electrodes with short length, locations away from the outside edges, proper width and well-chosen thickness are able to reduce the damping influences to a large extent. Afterwards, experiments of testing the Q factor are set up to validate the simulation values

    Research on cylindrical resonators’ damping asymmetry trimming method utilizing damping characteristic of piezoelectric electrodes

    No full text
    The damping asymmetry of cylindrical resonators is one of the major sources which result in the gyroscope’s drift. In this paper, a new approach for trimming the damping asymmetry of cylindrical resonators is proposed. The damping asymmetry trimming model is established to analyze the additional damping’s influences. Furthermore, piezoelectric electrodes’ effects on the cylindrical resonator’s damping characteristic are figured out through the finite element simulation. The procedures of this trimming method are also summarized based on theoretical analysis. At last, these theoretical analysis and simulation results are utilized to compensate the damping asymmetry of cylindrical resonators and the procedures of this trimming method are also summarized. Experiments are also implemented to verify this trimming method

    Nonoxidative Strategy for Monitoring Peroxynitrite Fluctuations in Immune Responses of Tumorigenesis

    No full text
    Phagocyte respiratory burst in immune responses generates enormous amounts of reactive oxygen species (ROS) to fulfill primary defense against neoplasia. However, the beneficial functions associated with ROS, especially the potent oxidant/nucleophile peroxynitrite, in an immunological process are still ambiguous. Herein, we report the construction and biological assessment of cyanine-based fluorescent biosensors, which are based on a nonoxidative strategy for peroxynitrite detection. The established nonoxidative strategy is composed of nucleophilic substitution and nanoaggregate formation initiated by peroxynitrite. The proposed nonoxidative strategy in this study could maintain cellular oxidative stress in the critical process of detection and preserve homeostasis of cell metabolism. The remarkable detection sensitivity, reaction selectivity, and spectral photostability of our biosensors enabled us to visualize endogenous peroxynitrite levels in immune-stimulated phagocytes. With the aid of basal peroxynitrite imaging in an acute peritonitis model, the visualization of peroxynitrite level variations in immune responses of tumorigenesis was accomplished assisted by our biosensors. It is envisioned that our strategy provides a promising tool for early tumor diagnosis and evaluation of tumor suppression in the process of immune responses without disturbing the functions of ROS signaling transduction

    Investigation of the Charge Accumulation Based on Stiffness Variation of the Micro-Shell Resonator Gyroscope

    No full text
    In capacitive microelectromechanical system (MEMS) devices, the application of dielectric materials causes long-term charging problems in the dielectric layers or substrates, which especially affect the repeatability and stability of high-performance devices. Due to the difficulties of observation and characterization of charge accumulation, an accurate characterization method is needed to study the effect of charge and propose suppression methods. In this paper, we analyze the influence of charge accumulation on the MSRG and propose a characterization method for charge accumulation based on stiffness variation. Experiments are carried out to characterize the charge accumulation in MSRG, and the effect of temperature on the process is also investigated. In the experiment, the charge accumulation is characterized accurately by the variation of the frequency split and stiffness axes. Furthermore, the acceleration of the charge accumulation is observed at high temperatures, as is the higher additional voltage from the charge accumulation

    Mode-localized accelerometer in the nonlinear Duffing regime with 75 ng bias instability and 95 ng/√Hz noise floor.

    Get PDF
    Mode-localized sensors have attracted attention because of their high parametric sensitivity and first-order common-mode rejection to temperature drift. The high-fidelity detection of resonator amplitude is critical to determining the resolution of mode-localized sensors where the measured amplitude ratio in a system of coupled resonators represents the output metric. Operation at specific bifurcation points in a nonlinear regime can potentially improve the amplitude bias stability; however, the amplitude ratio scale factor to the input measurand in a nonlinear regime has not been fully investigated. This paper theoretically and experimentally elucidates the operation of mode-localized sensors with respect to stiffness perturbations (or an external acceleration field) in a nonlinear Duffing regime. The operation of a mode-localized accelerometer is optimized with the benefit of the insights gained from theoretical analysis with operation in the nonlinear regime close to the top critical bifurcation point. The phase portraits of the amplitudes of the two resonators under different drive forces are recorded to support the experimentally observed improvements for velocity random walk. Employing temperature control to suppress the phase and amplitude variations induced by the temperature drift, 1/f noise at the operation frequency is significantly reduced. A prototype accelerometer device demonstrates a noise floor of 95 ng/√Hz and a bias instability of 75 ng, establishing a new benchmark for accelerometers employing vibration mode localization as a sensing paradigm. A mode-localized accelerometer is first employed to record microseismic noise in a university laboratory environment
    corecore