5,998 research outputs found

    Observation and Understanding of the Initial Unstable Electrical Contact Behaviors

    Get PDF
    Reliable and long-lifetime electrical contact is a very important issue in the field of radio frequency microelectromechanical systems (MEMS) and in energy transmission applications. In this paper, the initial unstable electrical contact phenomena under the conditions of micro-newton-scale contact force and nanometer-scale contact gap have been experimentally observed. The repetitive contact bounces at nanoscale are confirmed by the measured instantaneous waveforms of contact force and contact voltage. Moreover, the corresponding physical model for describing the competition between the electrostatic force and the restoring force of the mobile contact is present. Then, the dynamic process of contact closure is explicitly calculated with the numerical method. Finally, the effects of spring rigidness and open voltage on the unstable electrical contact behaviors are investigated experimentally and theoretically. This paper highlights that in MEMS systems switch, minimal actuation velocity is required to prevent mechanical bounce and excessive wear

    Programming by Example Made Easy

    Full text link
    Programming by example (PBE) is an emerging programming paradigm that automatically synthesizes programs specified by user-provided input-output examples. Despite the convenience for end-users, implementing PBE tools often requires strong expertise in programming language and synthesis algorithms. Such a level of knowledge is uncommon among software developers. It greatly limits the broad adoption of PBE by the industry. To facilitate the adoption of PBE techniques, we propose a PBE framework called Bee, which leverages an "entity-action" model based on relational tables to ease PBE development for a wide but restrained range of domains. Implementing PBE tools with Bee only requires adapting domain-specific data entities and user actions to tables, with no need to design a domain-specific language or an efficient synthesis algorithm. The synthesis algorithm of Bee exploits bidirectional searching and constraint-solving techniques to address the challenge of value computation nested in table transformation. We evaluated Bee's effectiveness on 64 PBE tasks from three different domains and usability with a human study of 12 participants. Evaluation results show that Bee is easier to learn and use than the state-of-the-art PBE framework, and the bidirectional algorithm achieves comparable performance to domain-specifically optimized synthesizers.Comment: Accepted by ACM Transactions on Software Engineering and Methodolog

    A REPRESENTATION OF GM-VARIATION IN WAVES BY THE VOLTERRA SYSTEM

    Get PDF
    ABSTRACT As known, the variation of the metacentric height of a ship in irregular waves is not a pure linear process, particular when a ship has large beam to draught ratio and large flare near the waterline at bow and stern. This kind of unconventional hull form is usually adopted for modern RoRo-ship, cruise-ship etc. which allows large cargo space and high service speed. In this paper, the GM-variation is derived into a function series with respect to the variation order and represented by the Volterra system. The transfer functions for the different orders are integrated numerically or analytically through expressing the sectional beam, area and moment in Taylor's series as function of the momentary water line. Thereby the explicit relationship between the hull form and GM-variation can be obtained. The numerical result has shown the significant effect of the second order term in the Volterra system on the GM-variation in waves. Hence, the non-linear characteristics of the GM-variation in an irregular wave can be easily analyzed by means of available nonlinear probability theories or Monte-Carlo simulation technique

    (2R,4R)-1-(tert-But­oxy­carbon­yl)-4-meth­oxy­pyrrolidine-2-carb­oxy­lic acid

    Get PDF
    In the title compound, C11H19NO5, the five-membered pyrrolidine ring adopts an envelope conformation. The dihedral angles between the carboxyl group plane, the pyrrolidine ring and the meth­oxy group are 59.50 (3) and 62.02 (1)°, respectively. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along [100]. The absolute configuration is assigned in accord with that of (2R,4R)-1-(tert-but­oxy­carbon­yl)-4-hy­droxy­pyrrolidine-2-carb­oxy­lic acid, which was the starting material in the synthesis

    Morphology and Mechanical Properties of Plantar Fascia in Flexible Flatfoot: A Noninvasive In Vivo Study

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-06-20, accepted 2021-08-16, epub 2021-09-15Publication status: PublishedPlantar fascia plays an important role in human foot biomechanics; however, the morphology and mechanical properties of plantar fascia in patients with flexible flatfoot are unknown. In this study, 15 flexible flatfeet were studied, each plantar fascia was divided into 12 positions, and the morphologies and mechanical properties in the 12 positions were measured in vivo with B-mode ultrasound and shear wave elastography (SWE). Peak pressures under the first to fifth metatarsal heads (MH) were measured with FreeStep. Statistical analysis included 95% confidence interval, intragroup correlation coefficient (ICC1,1), one-way analysis of variance (one-way ANOVA), and least significant difference. The results showed that thickness and Young’s modulus of plantar fascia were the largest at the proximal fascia (PF) and decreased gradually from the proximal end to the distal end. Among the five distal branches (DB) of the fascia, the thickness and Young’s modulus of the second and third DB were larger. The peak pressures were also higher under the second and third MH. This study found a gradient distribution in that the thickness and Young’s modulus gradient decreased from the proximal end to the distal end of plantar fascia in the longitudinal arch of flexible flatfeet. In the transverse arch, the thickness and Young’s modulus under the second and third DB were larger than those under the other three DB in flexible flatfoot, and the peak pressures under the second and third MH were also larger than those under the other three MH in patients with flexible flatfoot. These findings deepen our understanding of the changes of biomechanical properties and may be meaningful for the study of pathological mechanisms and therapy for flexible flatfoot

    From Luzon Strait to Dongsha Plateau: Stages in the Life of an Internal Wave

    Get PDF
    Tidal currents in Luzon Strait south of Taiwan generate some of the largest internal waves anywhere in the ocean. Recent collaborative efforts between oceanographers from the United States and Taiwan explored the generation, evolution, and characteristics of these waves from their formation in the strait to their scattering and dissipation on Dongsha Plateau and the continental slope of mainland China. Nonlinear internal waves affect offshore engineering, navigation, biological productivity, and sediment resuspension. Observations within Luzon Strait identified exceptionally large vertical excursions of density (as expressed primarily in temperature profiles) and intense turbulence as tidal currents interact with submarine ridges. In the northern part of the strait, the ridge spacing is close to the internal semidiurnal tidal wavelength, allowing wave generation at both ridges to contribute to amplification of the internal tide. Westward radiation of semidiurnal internal tidal energy is predominant in the north, diurnal energy in the south. The competing effects of nonlinearity, which tends to steepen the stratification, and rotational dispersion, which tends to disperse energy into inertial waves, transform waves traveling across the deep basin of the South China Sea. Rotation inhibits steepening, especially for the internal diurnal tide, but despite the rotational effect, the semidiurnal tide steepens sufficiently so that nonhydrostatic effects become important, leading to the formation of a nonlinear internal wave train. As the waves encounter the continental slope and Dongsha Plateau, they slow down, steepen further, and are modified and scattered into extended wave trains. At this stage, the waves can “break,” forming trapped cores. They have the potential to trap prey, which may account for their attraction to pilot whales, which are often seen following the waves as they advance toward the coast. Interesting problems remain to be explored and are the subjects of continuing investigations

    Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2010 Patani.Background: Ubiquitin modification of proteins influences cellular processes relevant to carcinogenesis. CHIP (carboxyl-terminus of Hsc70-interacting protein) is a chaperone-dependent E3 ubiquitin ligase, regulating the stability of heat shock protein 90 (HSP90) interacting proteins. CHIP is implicated in the modulation of estrogen receptor (ESR1) and Her-2/neu (ERBB2) stability. LOX (lysyl-oxidase) serves intracellular roles and catalyses the cross-linking of extracellular matrix (ECM) collagens and elastin. LOX expression is altered in human malignancies and their peri-tumoral stroma. However, paradoxical roles are reported. In this study, the level of mRNA expression of CHIP and LOX were assessed in normal and malignant breast tissue and correlated with clinico-pathological parameters. Materials and Methods: Breast cancer (BC) tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription; transcript levels were determined using real-time quantitative PCR and normalized against CK-19. Transcript levels were analyzed against TNM stage, nodal involvement, tumor grade and clinical outcome over a ten-year follow-up period. Results: CHIP expression decreased with increasing Nottingham Prognostic Index (NPI): NPI-1 vs. NPI-3 (12.2 vs. 0.2, P = 0.0264), NPI-2 vs. NPI-3 (3 vs. 0.2, P = 0.0275). CHIP expression decreased with increasing TNM stage: TNM-1 vs. TNM-2 (12 vs. 0, P = 0.0639), TNM-1 vs. TNM-2-4 (12 vs. 0, P = 0.0434). Lower transcript levels were associated with increasing tumor grade: grade 1 vs. grade 3 (17.7 vs. 0.3, P = 0.0266), grade 2 vs. grade 3 (5 vs. 0.3, P = 0.0454). The overall survival (OS) for tumors classified as ‘low-level expression’, was poorer than those with ‘high-level expression’ (118.1 vs. 152.3 months, P = 0.039). LOX expression decreased with increasing NPI: NPI-1 vs. NPI-2 (3 vs. 0, P = 0.0301) and TNM stage: TNM-1 = 3854639, TNM-2 = 908900, TNM-3 = 329, TNM-4 = 1.232 (P = NS). Conclusion: CHIP expression is associated with favorable prognostic parameters, including tumor grade, TNM stage and NPI. CHIP expression predicts OS. LOX expression is associated with improved NPI. In addition to their prognostic utility, mechanistic insights into tumor suppressor function may offer potential therapeutic strategies

    Combined update scheme in the Sznajd model

    Full text link
    We analyze the Sznajd opinion formation model, where a pair of neighboring individuals sharing the same opinion on a square lattice convince its six neighbors to adopt their opinions, when a fraction of the individuals is updated according to the usual random sequential updating rule (asynchronous updating), and the other fraction, the simultaneous updating (synchronous updating). This combined updating scheme provides that the bigger the synchronous frequency becomes, the more difficult the system reaches a consensus. Moreover, in the thermodynamic limit, the system needs only a small fraction of individuals following a different kind of updating rules to present a non-consensus state as a final state.Comment: 9 pages including figures. To appear in Physica
    corecore