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ABSTRACT

As known, the variation of the metacentric height of a ship in
irregular waves is not a pure linear process, particular when a ship has
large beam to draught ratio and large flare near the waterline at bow
and stern.  This kind of unconventional hull form is usually adopted
for modern RoRo-ship, cruise-ship etc. which allows large cargo
space and high service speed.  In this paper, the GM-variation is
derived into a function series with respect to the variation order and
represented by the Volterra system.  The transfer functions for the
different orders are integrated numerically or analytically through
expressing the sectional beam, area and moment in Taylor’s series as
function of the momentary water line.  Thereby the explicit relation-
ship between the hull form and GM-variation can be obtained.  The
numerical result has shown the significant effect of the second order
term in the Volterra system on the GM-variation in waves.  Hence, the
non-linear characteristics of the GM-variation in an irregular wave
can be easily analyzed by means of available nonlinear probability
theories or Monte-Carlo simulation technique.

INTRODUCTION

In her service life, a ship will involuntarily expe-
rience a lot occasions of storm weather and rough seas,
during which some dynamic problems can happen to the
ship.  For example, roll motion in resonance with the
wave excitation, roll motion due to stability reduction
or loss in combination with wind- or wave-induced
excitation moment, and parametrically excited roll
motion.  The GM-variation of a ship in wave is an
important evaluation factor in the latter two problems,
and that is why it has been an interesting object for
research internationally during the past years [1-3].

It has been always desired to explain the basic
mechanisms behind different ship dynamic stability

problems by means of some basic parameters, which
can not only provide explicit description of relationship
between the ship main particulars and its dynamic
behavior, but also result in design criteria for dynamic
stability.  However, owing to the limited computation
capacity before 1970’s, the analyses for the effect of
GM-variation on the dynamic stability problems were
mostly qualified by assuming linear relationship on the
wave amplitude, see [1] by Dunwoody.  He derived an
explicit formulation for the GM-variation related to the
hull form as a linear response to the wave elevation
along a ship, therefore, the spectrum theory could be
applied for description of the GM-variation of a ship in
long crested seas.  It provides the possibility for study of
ship roll behavior by means of an idealized single
differential equation.  When calculating the heave and
pitch motions of the quasi-static equilibrium is assumed,
i.e., only the Froude-Kryloff forces are taken into
account.

Nevertheless, the GM-variation has nonlinear char-
acteristics in relation to the wave amplitude and the
degree of nonlinearity is dependent on the hull form.
The numerical investigation into the GM-variation in
regular and irregular waves by Palmquist [4] in 1994
has shown that the GM-variation in an irregular wave
can be described by a sum of a linear Gaussian process
and a nonlinear process due to the higher order influence.
Besides, the numerical result has also shown that the
nonlinear process is strongly coupled with the evolution
of the linear Gaussian process.

In this paper, the GM-variation has been derived
into a series with respect to the variation order and then
represented by the Volterra system.  The transfer func-
tions for the different orders are integrated analytically
by means of expressing the sectional beam and moment
into Taylor’s series as a function of the momentary draft
change around the mean one.  As similar as a function,
f(x), can be expressed in a Taylor’s series:

   f(h + x) = f(h) + f '(h) ⋅ x + 1
2!

⋅ f "(h) ⋅ x 2 +

   + 1
(n + 1)!

⋅ f n – 1(h) ⋅ xn – 1 + Rn. (1)
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a nonlinear system can be written in the form of Volterra
system [5],

   y(t) = Σ
n = 1

∞

– ∞

∞
h n

– ∞

∞
(σ1, , σn)

   ⋅ u(t – σ1) u(t – σn) ⋅ dσ1 dσn, (2)

where u(t) is the input signal and also the wave elevation
in our case, and hn(σ1, ..., σn) are kernel functions for the
nonlinear system.  When the input signal u(t) is a
stochastic variable represented by a power spectrum,
the system can be rewritten in the following way

   
y(t) = H 1Σ

n = 1

N

(ωn) ⋅ e iωnt + β n (3)

for a linear system, and

   
y(t) = Σ

m = 1

M

Σ
n = 1

N

H 2(ωm ± ωn) ⋅ e i(ωm ± ωn)t + β mn (4)

for a second order system, and so on.  Where  ωm and ωn

in the above Eqs.  denote frequency.  βmn and βn are
phase angles.   i = – 1 .  The transfer functions, H1(ω)
and H1(ω1, ω2), are the Fourier’s transforms of h1(σ)
and h2(σ1, σ2) in Eq. (2).  Our task in the following is to
derive the transfer functions H1(σ) and H2(σ1, σ2) to
represent the GM-variation of a ship in waves.  If
needed, h1(σ) and h2(σ1, σ2) can be obtained by inverse
Fourier’s transforms of   H1(σ) and H2(σ1, σ2).

GM-VARIATION AS AN INTEGRATION SERIES

Mathematically, the section beam of a ship as a
function of draft can be expanded around the mean draft
T(x) as a Taylor’s series

   B(x, T(x) + z) = B(x, T(x)) + ∂B
∂z

⋅ z + 1
2!

∂2B
∂z 2

⋅ z 2

   + 1
3!

∂3B
∂z 3

⋅ z 3 + , (5)

where z is a variable for the sectional draft change.  As
well for the sectional moment with respect to the keel
line,

   M(x, T(x) + z = M(x, T(x)) + ∂M
∂z

⋅ z + 1
2!

∂2M
∂z 2

⋅ z 2

   + 1
3!

∂3M
∂z

⋅ z 3 + , (6)

and the sectional area,

   A(x, T(x) + z) = A(x, T(x)) + ∂A
∂z

⋅ z + 1
2!

∂2A
∂z 2

⋅ z 2

   + 1
3!

∂3A
∂z 3

⋅ z 3 + . (7)

For the sake of simplicity, Eqs. (5) to (7) can be respec-
tively expressed as

B(x, T(x) + z) = B(x, T(x)) + c1(x) • z + c2(x) • z2

+ c3(x) • z3 + ...; (8)

M(x, T(x) + z) = M(x, T(x)) + d1(x) • z + d2(x) • z2

+ d3(x) • z3 + ...; (9)

A(x, T(x) + z) = A(x, T(x)) + e1(x) • z + e2(x) • z2

+ e3(x) • z3 + ...; (10)

where

   c 1(x) = ∂B
∂z

,    c 2(x) = 1
2!

∂2B
∂z 2

,    c 3(x) = 1
3!

∂3B
∂z 3

, ;

   d 1(x) = ∂M
∂z

,    d 2(x) = 1
2!

∂2M
∂z 2

,    d 3(x) = 1
3!

∂3M
∂z 3

, ;

   e 1(x) = ∂A
∂z

,    e 2(x) = 1
2!

∂2A
∂z 2

,    e 3(x) = 1
3!

∂3A
∂z 3

, .

It should be noted that ci(x), di(x), ei(x) can be obtained
numerically by using the piecewisely polynomial func-
tions fitting the section beam, section moment and
section area along the ship.

The initial metacentric height GM0 at the mean
draft in still water can be calculated as followed:

GM0 = KB + BM − KG, (11)

where KB is the height of buoyancy center B above the
keel K and defined as

   KB = 1
∇ M

L
(x, T(x))dx, (12)

BM is the height of transverse metacenter M above
buoyancy center B and defined as

   BM = 1
12 ⋅∇ B3

L
(x, T(x))dx, (13)

and KG is the height of mass center G above the keel K.
In the above two equations, ∇  and L denote displace-
ment volume and length of the target ship respectively.
The initial GM-variation of a ship in a longitudinal
regular or irregular wave then becomes by neglecting
the Smith-effect

   
∂GM = 1

∇ L
[
B3(x, T(x) + r(x))

12
+ M(x, T(x) + r(x))

  – A(x, T(x) + r(x))KG(x)] dx – GM 0 (14)

where the sectional mass center above the keel,

KG(x) = KG + x • (η5 − α trim). (15)
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η5 in (15) is the wave-induced pitch angle and α trim the
trim angle in still water.

First replacing the variable z in Eqs. (8) to (10)
with  , the relative motion of the wave surface against
ship, and then substituting Eqs. (8) to (10) into Eq. (14),
the following expression can be yielded

   ∂GM =Σ
i

∂GMi, (16)

where

   
∂GM1 = 1

∇ L
[
B2(x, T)c 1(x)

4
+ d 1(x) – KGe1(x)]r(x)dx,

   
∂GM2 = 1

∇ L
[
3B2(x, T)c 2(x) + 3B(x, T)c 2

2(x)
12

+ d 2(x)

   – KGe2(x)]r 2(x, t)dx – 1
∇ L

xe1(x)η 5r(x)dx,

and so on.  Let

   
G 1(x) = 1

∇ [
B2(x, T)c 1(x)

4
+ d 1(x) – KGe1(x)], (17)

   
G 2(x) = 1

∇ [
3B2(x, T)c 2(x) + 3B(x, T)c 1

2(x)
12

  + d 2(x) – KGe2(x)], (18)

   R2(ω, x) =
– xe 1(x)η 5

∇ =
– xB(x, T(x))η 5

∇ , (19)

   
G 3(x) = 1

∇ [
3B2(x, T)c 3(x) + 6B(x, T)c1(x)c 2(x) + c 1

3(x)
12

  + d 3(x) – KGe3(x)], (20)

   R3(ω, x) =
– xe 2(x)η 5

∇ , (21)

and so on, such that

   ∂GMi = G i
L

(x)r i(x, t)dx + Ri
L

(x)r i – 1(x, t)dx.   (22)

It clearly shows that Gi(x) can be considered as the
characteristic function describing the hull geometry
near the water line with respect to the GM-variation of
a ship in waves.  Ri(x)(i ≥ 2)is a function linearly
depending upon the pitch response and contributes to
the higher order GM-variation.

AN EXAMPLE OF THE GM-VARIATION OF A
SHIP IN REGULAR FOLLOWING WAVES

The target ship in the example is an ordinary
RoRo-ship.  Similar ships were constructed mostly un-
der seventies. The ship has a aspect ratio of the beam to
draught equal to three.  Actually, the aspect ratio of
modern RoRo-ship or cruise ships are often around four.
The main particulars of the ship are shown in Table 1
and the hull form is shown in Fig. 1.  In Fig. 2, G1(x) is
shown along the ship.  For comparison, the contribu-
tions from the first, second and third term in Eq. (17) are
also demonstrated.  Apparently, the contribution from
the first term has the dominant portion in G1(x), particu-
lar in the aft body.  Because large relative motion
usually takes place in the fore and aft bodies, the conclu-
sion can be drawn that the first order GM-variation of
the ship in following wave is mainly due to the large
flares around the warterline areas in the fore and aft
bodies.  Fig. 3 shows the G1(x), G2(x) and G3(x) along
the ship.  As seen, G1(x) is the greatest, G2(x) is in one
order less than G1(x), and G3(x) one order less than

Table 1.  The ship’s main particulars

Lpp (mm) B (m) T (m) Cb KG (m) GM0 (m)

180 27.3 9.1 0.64 11.2 0.81

Fig. 1.  The hull form.

Fig. 2. G1(x) along the ship and the contributions from the first, second and
third term in Eq. (17) and (18).
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G2(x).
 The first order GM-variation of the ship in follow-

ing regular waves calculated using the actual method is
compared with the one using a simulation method simi-
lar to the one used by Palmquist [4] in 1994.  The result
without consideration to the Smith-effect shows good
agreements as shown in Fig. 4. While in Fig. 5, the
comparison is shown with consideration to the Smith-
effect.  It should be noted that in the actual method, the
Smith-effect is taken into account only in the calcula-
tion of heave and pitch motion in regular waves.

VOLTERRA SYSTEM REPRESENTATION OF
GM-VARIATION IN IRREGULAR WAVES

The elevation equation for a regular wave is

   η(x, t) = 1
2

a ⋅ [e i(kx – ωt + β) + e – i(kx – ωt + β)]. (23)

Fig. 3.  First three order G-functions.

Fig. 4. Comparison of the transfer functions of the first order GM-varia-
tion from the simulation and analytical calculation without consid-
eration to the Smith effect.

Fig. 5. Comparison of the transfer functions of the first order GM-varia-
tion from the simulation and analytical calculation with consider-
ation to the Smith effect.

An irregular wave is a wave system consisting of
a series harmonic wave components and its elevation is
written as followed:

   
η(x, t) = 1

2
⋅ { a nΣ

n = 1

N

⋅ [e i(k nx – ωnt + β n) + e – i(k nx – ωnt + β n)]},

(24)

ω and ωn in the above denote wave frequency.     k = ω2

g ,

and    k n =
ωn

2

g  both denote the wave number.  Random

wave phase β and βn follow the uniform distribution
between [π  −π].

Assuming that a ship’s heave and pitch motion in
regular waves follow the linear relation to the wave
amplitude, the relative motion, as shown in Fig. 6, of the
ship against the irregular wave can then be written as
followed,

   
r(x, t) = 1

2
a nΣ

n = 1

N

⋅ [e ik nx – η 3(ωn) + x ⋅ η 5(ωn)]

Fig. 6. Ship-fixed co-ordinate system and the definition of the six degrees
of motion freedom.
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⋅ e – i(ωnt + β n) + 1

2
a nΣ

n = 1

N

   ⋅ [e – ik nx – η 3(ωn) + x ⋅ η 5(ωn)] ⋅ e i(ωnt + β n), (25)

or

   
r(x, t) = a nΣ

n = 1

N

⋅ [υ(ωn, x) ⋅ e – i(ωnt + β n)

   + υ(ωn, x) ⋅ e i(ωnt + β n)], (26)

where the transfer functions of the relative motion are
defined by:

   υ(ωn, x) = 1
2

[e ik nx – η 3(ωn) + x ⋅ η 5(ωn)]; (27)

   υ(ωn, x) = 1
2

[e ik nx – η 3(ωn) + x ⋅ η 5(ωn)]. (28)

Obviously, the sum of the above two transfer functions
is a real number, i.e.,    υ(ωn, x) is conjunct to υ(ωn, t).  The
pitch motion in irregular waves is

   
η 5(t) = 1

2
a nΣ

n = 1

N

⋅ [η 5(ωn) ⋅ e – i(ωnt + β n)

   + η 5(ωn) ⋅ e i(ωnt + β n)]. (29)

The transfer functions for heave and pitch motions
are obtained by the linear ship motion theory and the
wave-induced motion is considered, we have

   
η 5(t) ⋅ r(x, t) = Σ

m = 1

M

Σ
n = 1

N

a ma n ⋅ [η 5(ωm) ⋅ υ(ωn, x) ⋅ e – ik 1

   + η 5(ωm) ⋅ υ(ωn, x) ⋅ e – ik 2]

   
+ Σ

m = 1

M

Σ
n = 1

N

a ma n ⋅ [η 5(ωm) ⋅ υ(ωn, x) ⋅ e – ik 3

   + η 5(ωm) ⋅ υ(ωn, x) ⋅ e – ik 4] (30)

and

   
r 2(x, t) = Σ

m = 1

M

Σ
n = 1

N

a ma n ⋅ [υ(ωm) ⋅ υ(ωn, x) ⋅ e – ik 1

   + υ(ωm) ⋅ υ(ωn, x) ⋅ e – ik 2]

   
+ Σ

m = 1

M

Σ
n = 1

N

a ma n ⋅ [υ(ωm) ⋅ υ(ωn, x) ⋅ e – ik 3

   + υ(ωm) ⋅ ν(ωn, x) ⋅ e – ik 4], (31)

where

k1 = (ωm + ωn)t + βm + βn;

k2 = (ωm − ωn)t + βm - β;

k3 = k2;

k4 = k1.

By substituting Eq. (26) , (27) and (28) into (17),
the transfer function of the first order GM-variation is
obtained

   
f 1(ω) = G 1(x) ⋅ υ(ω, x) ⋅ dx

L

f 1(ω) = G 1(x) ⋅ υ(ω, x) ⋅ dx
L

(32)

such that

   
∂GM 1(t) = a nΣ

n = 1

N

⋅ [f 1(ωn) ⋅ e – i(ωnt + β n) + f 1(ωn)

   ⋅ e – i(ωnt + β n)]. (33)

The transfer functions of the second order GM-
variation become

   
u 2(ωm, ωn) =

L
[G 2(x) ⋅ υ(ωm, x) ⋅ υ(ωn, x) + R 2(ωm, x) ⋅ υ(ωn, x)]dx

u 2(ωm, ωn) =
L

[G 2(x) ⋅ υ(ωm, x) ⋅ υ(ωn, x) + R 2(ωm, x) ⋅ υ(ωn, x)]dx

ν2(ωm, ωn) =
L

[G 2(x) ⋅ υ(ωm, x) ⋅ υ(ωn, x) + R 2(ωm, x) ⋅ υ(ωn, x)]dx

ν2(ωm, ωn) =
L

[G 2(x) ⋅ υ(ωm, x) ⋅ υ(ωn, x) + R 2(ωm, x) ⋅ υ(ωn, x)]dx

,

(34)

Thereby,

   
∂GM 2(t) = Σ

m = 1

M

Σ
n = 1

N

a ma n ⋅ {u 2(ωm, ωn) ⋅ e – i[(ωm + ωn)t + β m + β n]

   + u 2(ωm, ωn) ⋅ e – i[(ωm – ωn)t + β m – β n]}

   Σ
m = 1

M

Σ
n = 1

N

a ma n ⋅ {ν2(ωm, ωn) ⋅ e i[(ωm – ωn)t + β m – β n]

   + ν2(ωm, ωn) ⋅ e i[(ωm + ωn)t + β m + β n]} (35)

and so on for the higher order GM-variation.
According to the definition in (34),    ν(ωm, ωn) is

conjunct to u2(ωm, ωn) and v2(ωm, ωn) to    u 2(ωm, ωn).
Eq. (35) shows that the second order GM-variation
consists of two parts, i.e. high frequency variation and

   u 2(ωm, ωn) slow varying part.  u2(ωm, ωn) represents the
transfer functions for high frequency variation and

   u 2(ωm, ωn) slow varying.  Fig. 7 and Fig. 8 show the real
and imaginary part of u2(ωm, ωn) respectively.  Fig. 9
and Fig. 10 show the real and imaginary part of    u 2(ωm, ωn)
respectively.

Fig. 11 shows an example of the first and second
order GM-variation in an irregular wave.  As seen in the
figure, the second order GM-variation is positive all the
time and gives in increase in the GM-variation. The
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second order GM-variation is strongly related to the
first order one, i.e. high second order GM-variation is
associated with the high first order one.

Fig. 7. Real part of u2(ωm, ωn).  The unit for u2 is 1/m, and rad/s for the wave
frequency.

Fig. 8. Imaginary part of u2(ωm, ωn).  The unit for u2 is 1/m, and rad/s for
the wave frequency.

Fig. 9. Real part of    u 2(ωm, ωn).  The unit for  u 2 is 1/m, and rad/s for the
wave frequency.

Fig. 10. Imaginary part of    u 2(ωm, ωn).  The unit for  u 2 is 1/m, and rad/s for
the wave frequency.

Fig. 11. First and second order GM-variation in an irregular wave with Hs
= 2.

CONCLUSION

The most significance of the derived Volterra sys-
tem representation is that the effect of hull geometry on
the GM-variation is explicitly expressed in a function
series Gi(x) which are characteristic functions for the
different order GM-variations. Eq. (17) and Fig. 2 show
clearly that the first order GM-variation is governed by
the product of the hull side slope times the water line
beam in quadratic and the relative motion along the
ship, and that the second order one by the product of the
hull side curvature times the water line beam in qua-
dratic and the relative motion in quadratic along the
ship.  Hence, it becomes apparently why RoRo-ship
have considerably GM-variation in waves due to its
large breadth to draft ratio and large flares at fore and aft
bodies.

The Volterra system approach is a mathematical
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theory for treatment of nonlinear electronic and me-
chanic problems.  By the Volterra system representation,
one has the possibility to analyze a problem in a math-
ematical sense, such as to determine the characteristics
of the problem, to derive the correlation between the
input parameters and output results, and the probabilis-
tic nature of the results due to a stochastic input.  For an
example, by applying the second order probability theory
formulated by Naess [6] it becomes possible to calculate
the peak value distribution of the GM-variation of a ship
in irregular waves. Monte-Carlo simulation technique
is a practical approach for similar problems.

As shown by the numerical results, the Taylor’s
series has been successfully used for the representation
of the hull form in the vicinity of the draft line, and
thereby provides the basis for the Volterra system rep-
resentation of the GM-variation of a ship in following or
heading waves.  This technique should be extended for
the description of the coupled sway, heave, pitch and
yaw motion of a ship in following and quartering waves.
It is of fundamental interest for the study of dynamic
instability problems such as broaching-off, course in-
stability coupled with the stability loss in quartering
wave, etc.  These problems can then be analyzed taking
the higher order effect into account by means of the
Volterra system theory.  Further extension work shall be
done in another paper.
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