597 research outputs found
Ligand exchange reactions of [Reâ(ÎŒ-OR)â(CO)â]â»(R = H, Me) with sulfur, selenium, phosphorus and nitrogen donor ligands, investigated by electrospray mass spectrometry
Negative-ion electrospray mass spectrometry has been used to investigate the reactions of the dinuclear rhenium aggregates [Reâ(ÎŒ-OH)â(CO)â]â» 1 and [Reâ(ÎŒ-OMe)â(CO)â]â» 2 with a range of thiols, benzeneselenol, and some other sulfur-, phosphorus- and nitrogen-based ligands. Typically up to three of the hydroxo ligands are replaced by simple thiolates, giving the series of species [Reâ(OH)â(SR)(CO)â]â», [Reâ(OH)(SR)â(CO)â]â», and [Reâ(SR)â(CO)â]â». Similarly, reaction of 1 with HâS gives the species [Reâ(ÎŒ-SH)â(CO)â]â», which undergoes an analogous fragmentation process to [Reâ(ÎŒ-OH)â(CO)â]â», at high cone voltages, by loss of HâS and formation of [Reâ(S)(SH)(CO)â]â». With ligands which are good chelating agents (such as dithiocarbamates RâNCSââ», and thiosalicylic acid, HSCâHâCOâH) initial substitution of one or two OH groups readily occurs, but on standing the dimer is cleaved giving [Re(SâCNRâ)â(CO)â]â» and [Re(SCâHâCOâ)(CO)â]â». The different reactivities of the dithiol reagents benzene-1,2- and benzene-1,4-dimethanethiol towards 1 are also described. Complex 1 also reacts with aniline, and with primary (but not secondary) amides RC(O)NHâ, giving monosubstituted species [Reâ(OH)â(NHPh)(CO)â]â» and [Reâ(OH)â{NHC(O)R}(CO)â]â» respectively. The reactions with adenine and thymine, and with the inorganic anions thiocyanate and thiosulfate, are also described
Investigation of tin liquid anode on hybrid direct carbon fuel cells
A novel carbon fuel cell mode was designed for improving the cell performance on hybrid direct carbon fuel cells (HDCFCs). In this paper, the effects of Sn phase as the liquid anode on HDCFCs' performance was investigated. The comparative results indicated that the cell performance was strongly dependent on the amount of Sn loading. With selectivity of different weight ratios, 20 wt% Sn additive was optimized to be the best behavior, corresponding to considerably decreased ohmic and polarization resistance. However, other compositions showed inferior performance than that of Sn-free anode, probably due to the Li2SnO3 impurity formation impeding catalytic properties of liquid Sn and Li-K salt. Stability testing further implied the cell with 20 wt% Sn addition was the best choice because of maximum fuel efficiency and reasonable durability. Based on these results, the possible completing mechanisms of Sn participating in electrochemical reaction on HDCFCs were proposed.Postprin
Vibrational signature of hydrated protons confined in MXene interlayers
The hydration structure of protons has been studied for decades in bulk water and protonated clusters due to its importance but has remained elusive in planar confined environments. Two dimensional 2D transition metal carbides known as MXenes show extreme capacitance in protic electrolytes, which has attracted attention in the energy storage field. We report here that discrete vibrational modes related to protons intercalated in the 2D slits between Ti3C2Tx MXene layers can be detected using operando infrared spectroscopy. The origin of these modes, not observed for protons in bulk water, is attributed to protons with reduced coordination number in confinement based on Density Functional Theory calculations. This study therefore demonstrates a useful tool for the characterization of chemical species under 2D confinemen
Singularly Perturbed Monotone Systems and an Application to Double Phosphorylation Cycles
The theory of monotone dynamical systems has been found very useful in the
modeling of some gene, protein, and signaling networks. In monotone systems,
every net feedback loop is positive. On the other hand, negative feedback loops
are important features of many systems, since they are required for adaptation
and precision. This paper shows that, provided that these negative loops act at
a comparatively fast time scale, the main dynamical property of (strongly)
monotone systems, convergence to steady states, is still valid. An application
is worked out to a double-phosphorylation ``futile cycle'' motif which plays a
central role in eukaryotic cell signaling.Comment: 21 pages, 3 figures, corrected typos, references remove
Stoichiometry of Heteromeric BAFF and APRIL Cytokines Dictates Their Receptor Binding and Signaling Properties.
The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity
Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions
We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb
superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson
junctions with high critical current densities, large normal resistance times
area products, high quality factors, and very good spatial uniformity. For
these junctions a transition from 0- to \pi-coupling is observed for a
thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The
magnetic field dependence of the \pi-coupled junctions demonstrates good
spatial homogeneity of the tunneling barrier and ferromagnetic interlayer.
Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane
anisotropy and large saturation magnetization, indicating negligible dead
layers at the interfaces. A careful analysis of Fiske modes provides
information on the junction quality factor and the relevant damping mechanisms
up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at
low frequencies, the damping is dominated by the finite surface resistance of
the junction electrodes at high frequencies. High quality factors of up to 30
around 200 GHz have been achieved. Our analysis shows that the fabricated
junctions are promising for applications in superconducting quantum circuits or
quantum tunneling experiments.Comment: 15 pages, 9 figure
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Noise Filtering Strategies of Adaptive Signaling Networks: The Case of E. Coli Chemotaxis
Two distinct mechanisms for filtering noise in an input signal are identified
in a class of adaptive sensory networks. We find that the high frequency noise
is filtered by the output degradation process through time-averaging; while the
low frequency noise is damped by adaptation through negative feedback. Both
filtering processes themselves introduce intrinsic noises, which are found to
be unfiltered and can thus amount to a significant internal noise floor even
without signaling. These results are applied to E. coli chemotaxis. We show
unambiguously that the molecular mechanism for the Berg-Purcell time-averaging
scheme is the dephosphorylation of the response regulator CheY-P, not the
receptor adaptation process as previously suggested. The high frequency noise
due to the stochastic ligand binding-unbinding events and the random ligand
molecule diffusion is averaged by the CheY-P dephosphorylation process to a
negligible level in E.coli. We identify a previously unstudied noise source
caused by the random motion of the cell in a ligand gradient. We show that this
random walk induced signal noise has a divergent low frequency component, which
is only rendered finite by the receptor adaptation process. For gradients
within the E. coli sensing range, this dominant external noise can be
comparable to the significant intrinsic noise in the system. The dependence of
the response and its fluctuations on the key time scales of the system are
studied systematically. We show that the chemotaxis pathway may have evolved to
optimize gradient sensing, strong response, and noise control in different time
scalesComment: 15 pages, 4 figure
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
- âŠ