16 research outputs found

    Baicalin Protects Mice Brain From Apoptosis in Traumatic Brain Injury Model Through Activation of Autophagy

    Get PDF
    Autophagy is associated with secondary injury following traumatic brain injury (TBI) and is expected to be a therapeutic target. Baicalin, a neuroprotective agent, has been proven to exert multi-functional bioactive effects in brain injury diseases. However, it is unknown if Baicalin influences autophagy after TBI. In the present study, we aimed to explore the effects that Baicalin had on TBI in a mice model, focusing on autophagy as a potential mechanism. We found that Baicalin administration significantly improved motor function, reduced cerebral edema, and alleviated disruption of the blood-brain barrier (BBB) after TBI in mice. Besides, TBI-induced apoptosis was reversed by Baicalin evidenced by Nissl staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and the level of cleaved caspase-3. More importantly, Baicalin enhanced autophagy by detecting the autophagy markers (LC3, Beclin 1, and p62) using western blot and LC3 immunofluorescence staining, ameliorating mitochondrial apoptotic pathway evidenced by restoration of the TBI-induced translocation of Bax and cytochrome C. However, simultaneous treatment with 3-MA inhibited Baicalin-induced autophagy and abolished its protective effects on mitochondrial apoptotic pathway. In conclusion, we demonstrated that Baicalin enhanced autophagy, ameliorated mitochondrial apoptosis and protected mice brain in TBI mice model

    Luminescence and temperature-sensing properties of Li+, Na+, or K+, Tm3+, and Yb3+ co-doped Bi2WO6 phosphors

    No full text
    A series of Li+, Na+, or K+, Tm3+, and Yb3+ co-doped Bi2WO6 upconversion phosphors were prepared by a high-temperature solid-phase method at 800°C for 3 h. X-ray diffraction showed that Li+, Na+, K+, Tm3+, and Yb3+ doping did not affect the orthorhombic structure of the Bi2WO6 matrix. Scanning electron microscopy images of the Bi2WO6:1% Tm3+, 6% Yb3+ and 1% Li+, 1% Na+, or 1% K+-doped Bi2WO6:1% Tm3+, 6% Yb3+ samples reveal irregular particles with a 0.5–5 µm particle size range; upon Na+ or K+ doping, the particle size increases and the particle surface becomes smooth. EDS analysis shows that the above ions are well incorporated into the powder particles. At 298 K, the relative temperature sensitivities are 0.00144, 0.0016, 0.0024, and 0.0018 K−1 for the 1% Tm3+, 6% Yb3+:Bi2WO6 samples without alkali metal ions and doped with 1% Li+, 1% Na+, or 1% K+ based on the thermally coupled energy level 3F3/3F2 characterization temperature. However, under the same conditions, when using the nonthermally coupled level 3F3/1G4 characterization temperature, the relative temperature sensitivities of these four samples are 0.0378, 0.0166, 0.046, and 0.0257 K−1, increasing by 26.3, 10.3, 19.1, and 13.9 times, respectively. The relative temperature sensitivities of the 1% Na+, 1% Tm3+, and 6% Yb3+:Bi2WO6 samples are the highest at 298 K

    SS-31 Provides Neuroprotection by Reversing Mitochondrial Dysfunction after Traumatic Brain Injury

    No full text
    SS-31, a novel mitochondria-targeted peptide, has been proven to provide neuroprotection in a variety of neurological diseases. Its role as a mitochondrial reactive oxygen species (ROS) scavenger and the underlying pathophysiological mechanisms in traumatic brain injury (TBI) are still not well understood. The aim of the designed study was to investigate the potential neuroprotective effects of SS-31 and fulfill our understanding of the process of the mitochondrial change in the modified Marmarou weight-drop model of TBI. Mice were randomly divided into sham, TBI, TBI + vehicle, and TBI + SS-31 groups in this study. Peptide SS-31 (5 mg/kg) or vehicle was intraperitoneally administrated 30 min after TBI with brain samples harvested 24 h later for further analysis. SS-31 treatment significantly reversed mitochondrial dysfunction and ameliorated secondary brain injury caused by TBI. SS-31 can directly decrease the ROS content, restore the activity of superoxide dismutase (SOD), and decrease the level of malondialdehyde (MDA) and the release of cytochrome c, thus attenuating neurological deficits, brain water content, DNA damage, and neural apoptosis. Moreover, SS-31 restored the expression of SIRT1 and upregulated the nuclear translocation of PGC-1α, which were proved by Western blot and immunohistochemistry. Taken together, these data demonstrate that SS-31 improves the mitochondrial function and provides neuroprotection in mice after TBI potentially through enhanced mitochondrial rebiogenesis. The present study gives us an implication for further clinical research

    Characterization of the Tibet plateau Jerusalem artichoke (Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis

    No full text
    Abstract Background Jerusalem artichoke (Helianthus tuberosus L.) is a characteristic crop in the Qinghai-Tibet Plateau which has rapidly developed and gained socioeconomic importance in recent years. Fructans are abundant in tubers and represent the foundation for their formation, processing and utilization of yield; and are also widely used in new sugar-based materials, bioenergy processing, ecological management, and functional feed. To identify key genes in the metabolic pathway of fructans in Jerusalem artichoke, high-throughput sequencing was performed using Illumina Hi Seq™ 2500 equipment to construct a transcriptome library. Results Qinghai-Tibet Plateau Jerusalem artichoke “Qingyu No.1” was used as the material; roots, stems, leaves, flowers and tubers of Jerusalem artichoke in its flowering stage were mixed into a mosaic of the Jerusalem artichoke transcriptome library, obtaining 63,089 unigenes with an average length of 713.6 bp. Gene annotation through the Nr, Swiss Prot, GO, KOG and KEGG databases revealed 34.95 and 46.91% of these unigenes had similar sequences in the Nr and Swiss Prot databases. The GO classification showed the Jerusalem artichoke unigenes were divided into three ontologies, with a total of 49 functional groups encompassing biological processes, cellular components, and molecular functions. Among them, there were more unigenes involved in the functional groups for cellular processes, metabolic processes, and single-organism processes. 38,999 unigenes were annotated by KOG and divided into 25 categories according to their functions; the most common annotation being general function prediction. A total of 13,878 unigenes (22%) were annotated in the KEGG database, with the largest proportion corresponding to pathways related to carbohydrate metabolism. A total of 12 unigenes were involved in the synthesis and degradation of fructan. Cluster analysis revealed the candidate 12 unigene proteins were dispersed in the 5 major families of proteins involved in fructan synthesis and degradation. The synergistic effect of INV gene is necessary during fructose synthesis and degradation in Jerusalem artichoke tuber development. The sequencing data from the transcriptome of this species can provide a reliable data basis for the identification and assessment of the expression of the members of the INV gene family.A simple sequence repeat (SSR) loci search was performed on the transcriptome data of Jerusalem artichoke, identifying 6635 eligible SSR loci with a large proportion of dinucleotide and trinucleotide repeats, and the most different motifs were repeated 5 times and 6 times. Dinucleotide and trinucleotide repeat motifs were the most frequent, with AG/CT and ACC/GGT repeat motifs accounting for the highest proportion. Conclusions In this study, a database search of the transcriptome of the Jerusalem artichoke from the Qinghai Tibet Plateau was conducted by high throughput sequencing technology to obtain important transcriptional and SSR loci information. This allowed characterization of the overall expression features of the Jerusalem artichoke transcriptome, identifying the key genes involved in metabolism in this species. In turn, this offers a foundation for further research on the regulatory mechanisms of fructan metabolism in Jerusalem artichoke

    Transcriptomics Integrated with Metabolomics Unveil Carotenoids Accumulation and Correlated Gene Regulation in White and Yellow-Fleshed Turnip (Brassica rapa ssp. rapa)

    No full text
    Turnip (Brassica rapa ssp. rapa) is considered to be a highly nutritious and health-promoting vegetable crop, whose flesh color can be divided into yellow and white. It is widely accepted that yellow-fleshed turnips have higher nutritional value. However, reports about flesh color formation is lacking. Here, the white-fleshed inbred line, W21, and yellow-fleshed inbred line, W25, were profiled from the swollen root of the turnip at three developmental periods to elucidate the yellow color formation. Transcriptomics integrated with metabolomics analysis showed that the PSY gene was the key gene affecting the carotenoids formation in W25. The coding sequence of BrrPSY-W25 was 1278 bp and that of BrrPSY-W21 was 1275 bp, and BrrPSY was more highly expressed in swollen roots in W25 than in W21. Transient transgenic tobacco leaf over-expressing BrrPSY-W and BrrPSY-Y showed higher transcript levels and carotenoids contents. Results revealed that yellow turnip formation is due to high expression of the PSY gene rather than mutations in the PSY gene, indicating that a post-transcriptional regulatory mechanism may affect carotenoids formation. Results obtained in this study will be helpful for explaining the carotenoids accumulation of turnips

    Ratiometric Fluorescent Detection of Pb<sup>2+</sup> by FRET-Based Phthalocyanine-Porphyrin Dyads

    No full text
    Sensitive and selective detection of Pb<sup>2+</sup> is a very worthwhile endeavor in terms of both human health and environmental protection, as the heavy metal is fairly ubiquitous and highly toxic. In this study, we designed phthalocyanine–porphyrin (Pc-Por) heterodyads, namely, H<sub>2</sub>Pc-α-ZnPor (<b>1</b>) and H<sub>2</sub>Pc-β-ZnPor (<b>2</b>), by connecting a zinc­(II) porphyrin moiety to the nonperipheral (α) or peripheral (β) position of a metal-free phthalocyanine moiety. Upon excitation at the porphyrin Soret region (420 nm), both of the dyads exhibited not only a porphyrin emission (605 nm) but also a phthalocyanine emission (ca. 700 nm), indicating the occurrence of intramolecular fluorescence resonance energy transfer (FRET) processes from the porphyrin donor to the phthalocyanine acceptor. The dyads can selectively bind Pb<sup>2+</sup> in the phthalocyanine core leading to a red shift of the phthalocyanine absorption and thus a decrease of spectral overlap between the porphyrin emission and phthalocyanine absorption, which in turn suppresses the intramolecular FRET. In addition, the binding of Pb<sup>2+</sup> can highly quench the emission of phthalocyanine by heavy-metal ion effects. The synergistic coupled functions endow the dyads with remarkable ratiometric fluorescent responses at two distinct wavelengths (<i>F</i><sub>605</sub>/<i>F</i><sub>703</sub> for <b>1</b> and <i>F</i><sub>605</sub>/<i>F</i><sub>700</sub> for <b>2</b>). The emission intensity ratio increased as a linear function to the concentration of Pb<sup>2+</sup> in the range of 0–4.0 μM, whereas the detection limits were determined to be 3.4 × 10<sup>–9</sup> and 2.2 × 10<sup>–8</sup> M for <b>1</b> and <b>2</b>, respectively. Furthermore, by comparative study of <b>1</b> and <b>2</b>, the effects of distance and relative orientation between Pc and ZnPor fluorophores on the FRET efficiency and sensing performance were highlighted, which is helpful for further optimizing such FRET systems
    corecore