846 research outputs found

    Coherence and the look number-based deformation gradient function model of INSAR

    No full text
    Author name used in this publication: X. L. DingVersion of RecordPublishe

    Study on the distribution regularity of gas volume in multiphase pump

    Get PDF
    In order to reduce the phase separation, air plug and turbulence vortex in the multiphase pump. The two-fluid model and the standard k-¦ turbulence model are selected, the distribution regularity of gas phase volume within the multiphase pump is researched using the CFD software about air-liquid two-phase under the different working conditions. The results of the study showed that the gas phase gathers at the rim when the gas-liquid two-phase enter into the impeller inlet, and the gas phase is gradually increased at the rim with the increase of the flow rate, the gas is concentrated in the hub at the second half of the impeller, and the most serious aggregation is the small flow rate condition. When the flow is constant, the gas obviously increases in the guide vane hub with the increase of the gas volume fraction. With the increase of the gas volume fraction, the uniformity of the gas phase in the circumferential direction is deteriorated in the inlet and the middle of impeller, and the lower gas volume fraction region is decreased in the impeller. The results of the study reveal the distribution regularity of gas volume within the multiphase pump, provide the reference basis for the design of the multiphase pump under the higher gas volume fraction

    Effect of gas volume fraction on the vortex motion within the oil-gas multiphase pump

    Get PDF
    In order to research the regular pattern of the vortex within the oil-gas multiphase pump with the gas volume fraction changes, the standard K-epsilon turbulence model is selected, the gas-liquid two-phase flow field within the multiphase pump is calculated by the CFD software under the different gas volume fraction, the regular pattern of the vortex motion within the multiphase pump is analyzed under the different gas volume fraction. The results show that, from the impeller hub to the rim, the vortex in the guide vane is gradually become smaller, the vortex within the impeller is gradually obvious, and with the increase of the gas volume fraction, the flow separation, the backflow and the vortex phenomenon within the impeller and the guide vane are gradually increased. It is also found that the flow separation has a greater influence on the turbulent dissipation within the whole flow field, that is, the more serious the area of off flow, the greater the energy loss. The results provide an important theoretical basis for the optimal design of the structure of oil-gas multiphase pump

    Visual Learning in Multiple-Object Tracking

    Get PDF
    Tracking moving objects in space is important for the maintenance of spatiotemporal continuity in everyday visual tasks. In the laboratory, this ability is tested using the Multiple Object Tracking (MOT) task, where participants track a subset of moving objects with attention over an extended period of time. The ability to track multiple objects with attention is severely limited. Recent research has shown that this ability may improve with extensive practice (e.g., from action videogame playing). However, whether tracking also improves in a short training session with repeated trajectories has rarely been investigated. In this study we examine the role of visual learning in multiple-object tracking and characterize how varieties of attention interact with visual learning.Participants first conducted attentive tracking on trials with repeated motion trajectories for a short session. In a transfer phase we used the same motion trajectories but changed the role of tracking targets and nontargets. We found that compared with novel trials, tracking was enhanced only when the target subset was the same as that used during training. Learning did not transfer when the previously trained targets and nontargets switched roles or mixed up. However, learning was not specific to the trained temporal order as it transferred to trials where the motion was played backwards.These findings suggest that a demanding task of tracking multiple objects can benefit from learning of repeated motion trajectories. Such learning potentially facilitates tracking in natural vision, although learning is largely confined to the trajectories of attended objects. Furthermore, we showed that learning in attentive tracking relies on relational coding of all target trajectories. Surprisingly, learning was not specific to the trained temporal context, probably because observers have learned motion paths of each trajectory independently of the exact temporal order

    An experimental investigation into resonance dry grinding of hardened steel and nickel alloys with element of MQL

    Get PDF
    Current policies on environmental issues put extra pressures on manufacturing processes to be resource efficient and eco-friendly. However, in grinding processes, large amounts of cutting fluids are used. These fluids are not environmental friendly thus require proper management before disposal with associated cost. Hence, this work sets to explore low-frequency vibration in grinding in order to improve coolant application in conventional grinding at the first stage with the aim to introduce this into high efficiency deep grinding (HEDG) at latter stage. An attempt is made to grind nickel alloys with minimum quantity lubricant (MQL) as oppose to flood cooling. To achieve this with minimum alterations to the machine tool, a piezo-driven workpiece holder was developed for surface grinding. This simple innovative workpiece holder allowed oscillating during actual grinding process. However, this paper presents the results of low-frequency oscillatory grinding in dry and near-dry conditions. The response of the machine tool spindle unit is presented alongside with the workpiece holder response. In this investigation, hardened steels and nickel alloys were ground with vibration assistance. The grinding forces are illustrated together with the surface finish. The wheel performance is given in terms of grinding ratio

    Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites

    Get PDF
    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in S. cerevisiae is qualitatively consistent with a `barrier nucleosome model', in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model, with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia

    Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors

    Full text link
    There has been an intense search in recent years for long-lived spin-polarized carriers for spintronic and quantum-computing devices. Here we report that spin polarized quasi-particles in superconducting aluminum layers have surprisingly long spin-lifetimes, nearly a million times longer than in their normal state. The lifetime is determined from the suppression of the aluminum's superconductivity resulting from the accumulation of spin polarized carriers in the aluminum layer using tunnel spin injectors. A Hanle effect, observed in the presence of small in-plane orthogonal fields, is shown to be quantitatively consistent with the presence of long-lived spin polarized quasi-particles. Our experiments show that the superconducting state can be significantly modified by small electric currents, much smaller than the critical current, which is potentially useful for devices involving superconducting qubits
    corecore