104 research outputs found

    Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods

    Get PDF
    Ni-doped goethite (α-FeOOH) nanorods were synthesized from mixed Fe(III)-Ni(II) nitrate solutions with various Ni/(Ni+Fe) ratios (0, 5, 10, 20, 33 and 50 mol % Ni) by hydrothermal precipitation in a highly alkaline medium using the strong organic alkali, tetramethylammonium hydroxide (TMAH). Ni-doped hematite (α-Fe2O3) nanorods were obtained by calcination of Ni-doped goethite nanorods at 400 °C. The Ni 2+ -for-Fe 3+ substitution in goethite and hematite was confirmed by determination of the unit cell expansion (due to the difference in the ionic radii of Fe 3+ and Ni 2+ ) using XRPD and determination of the reduction of a hyperfine magnetic field (due to the difference in magnetic moments of Fe 3+ and Ni 2+ ) using Mössbauer spectroscopy. Single-phase goethite nanorods were found in samples containing 0 or 5 mol % Ni. A higher Ni content in the precipitation system (10 mol % or more) resulted in a higher Ni 2+ -for-Fe 3+ substitution in goethite, and larger Ni-doped goethite nanorods, though with the presence of low crystalline Ni-containing ferrihydrite and Ni ferrite (NiFe2O4) as additional phases. Significant changes in FT-IR and UV-Vis-NIR spectra of prepared samples were observed with increasing Ni content. Electrochemical measurements of samples showed a strong increase in oxygen evolution reaction (OER) electrocatalytic activity with increasing Ni content. © 2018 Croatian Chemical Society. All Rights Reserved

    Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.</p> <p>Results</p> <p>This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in <it>Arabidopsis thaliana </it>that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the <it>Arabidopsis thaliana </it>genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in <it>Arabidopsis thaliana </it>have alignments to intergenic regions in <it>Arabidopsis lyrata</it>, consistent with either <it>de novo </it>origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different <it>Arabidopsis thaliana </it>accessions are further identified as accession-specific genes, most likely of recent origin in <it>Arabidopsis thaliana</it>. Putative <it>de novo </it>origination for two of the <it>Arabidopsis thaliana</it>-only genes is identified via additional sequencing across accessions of <it>Arabidopsis thaliana </it>and closely related sister species lineages. We demonstrate that lineage-specific genes have high tissue specificity and low expression levels across multiple tissues and developmental stages. Finally, stress responsiveness is identified as a distinct feature of Brassicaceae-specific genes; where these LSGs are enriched for genes responsive to a wide range of abiotic stresses.</p> <p>Conclusion</p> <p>Improving our understanding of the origins of lineage-specific genes is key to gaining insights regarding how novel genes can arise and acquire functionality in different lineages. This study comprehensively identifies all of the Brassicaceae-specific genes in <it>Arabidopsis thaliana </it>and identifies how the majority of such lineage-specific genes have arisen. The analysis allows the relative importance (and prevalence) of different evolutionary routes to the genesis of novel ORFs within lineages to be assessed. Insights regarding the functional roles of lineage-specific genes are further advanced through identification of enrichment for stress responsiveness in lineage-specific genes, highlighting their likely importance for environmental adaptation strategies.</p

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other <it>Populus </it>species.</p> <p>Results</p> <p>Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.</p> <p>Conclusions</p> <p>In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.</p

    Elucidation of oxygen reduction reaction pathway on carbon-supported manganese oxides

    No full text
    The oxygen reduction reaction (ORR) is a complex process. This is particularly the case for carbon-supported electrocatalysts in alkaline electrolytes, because carbon can catalyze the ORR via a two-electron transfer to generate hydroperoxide (HO2-), which subsequently undergoes either chemical decomposition to generate O-2 and OH- (HODR) or electrochemical reduction to OH- (HORR). In this study, we elucidated the ORR pathway on a series of carbon-supported manganese oxides, which have been extensively studied as electrocatalysts in alkaline electrolytes. A comparison of the turnover frequencies of the HODR and HORR showed that although an apparent four-electron transfer process was identified when the HO2- yield was measured using the rotating ring disk electrode technique, the real ORR pathway involved a two-electron transfer process to generate HO2-, with subsequent chemical decomposition of HO2. These results will help us to understand the intrinsic catalytic behavior of carbon-supported transition-metal oxides for the ORR in alkaline electrolytes. (C) 2015, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved

    Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage

    No full text
    Functional and structural tailoring of three-dimensional (3D) conducting polymer nanoarchitectures is a promising route but remains challenging to develop high-performance electrodes for electrochemical energy storage. Herein, we design poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) 3D mesoporous aerogel electrodes through a simple and original one-pot mechanochemical processing route. The hierarchical structure of neat PEDOT:PSS aerogels displays a highly interpenetrated porous conductive network with a record high active surface area of 470 m2 g−1 amongst the class of conducting polymer architectures. Robust structural and electrochemical performances are achieved with high gravimetric, areal and volumetric capacitance metrics of 120 F/g, 2.5 F cm−2, and 124 F cm−3, respectively, as the result of a mixed hybrid faradaic - capacitive charge storage mechanism. Moreover, these performances are attained in organic based electrolytes, reported so far to be incompatible or hinder the electrochemical activity of PEDOT:PSS. We undermine the fundamentals of the electrochemical operation in these electrodes and show that the electrolyte chemistry and the aerogel morphology particularly impact the charge storage performances demonstrating the superiority of the mesoporous architecture for charge transfer and ion exchange. Asymmetric cells are built having a specific capacitance of 40 F/g based on the total mass of electrodes and a good cyclic stability with 90% capacitance retention after 1000 charge and discharge cycles. This study offers a new route to enhance the electrochemical properties of conducting polymers and provides suggestive insights for developing high-performance polymer electrode materials for electrochemical energy storage

    A highly active porous Pt-PbOx/C catalyst toward alcohol electro-oxidation in alkaline electrolyte

    No full text
    A highly active porous Pt-PbOx/C composite toward alcohol (methanol, ethanol and ethylene glycol) oxidation in alkaline media is synthesized via a modified polyol method. The crystalline structure, morphology, elemental distribution and the chemical state of metals on surface of the Pt-PbOx/C are evaluated by X-ray diffraction, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The large porous Pt-PbOx/C composite are composed of both Pt and PbOx primary nanoparticles of 1-2 nm which mixed geometrically with unchanged electronic environments of Pt and PbOx. The potentiodynamic and potentiostatic measurements for alcohol electro-oxidation over Pt-PbOx/C in alkaline media show that the activities toward C1-C2 alcohol electro-oxidation were improved remarkably compared to the commercial PVC due to both geometric effect, i.e., the addition of PbOx to Pt provides steric hindrance for CO adsorption, and bi-functional effect, i.e., OHad species could be generated over PbOx surface at lower potentials which facilitates the dehydrogenation of the intermediate methoxy. Crown Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved
    corecore