183 research outputs found

    Dual Function of CD81 in Influenza Virus Uncoating and Budding

    Get PDF
    As an obligatory pathogen, influenza virus co-opts host cell machinery to harbor infection and to produce progeny viruses. In order to characterize the virus-host cell interactions, several genome-wide siRNA screens and proteomic analyses have been performed recently to identify host factors involved in influenza virus infection. CD81 has emerged as one of the top candidates in two siRNA screens and one proteomic study. The exact role played by CD81 in influenza infection, however, has not been elucidated thus far. In this work, we examined the effect of CD81 depletion on the major steps of the influenza infection. We found that CD81 primarily affected virus infection at two stages: viral uncoating during entry and virus budding. CD81 marked a specific endosomal population and about half of the fused influenza virus particles underwent fusion within the CD81-positive endosomes. Depletion of CD81 resulted in a substantial defect in viral fusion and infection. During virus assembly, CD81 was recruited to virus budding site on the plasma membrane, and in particular, to specific sub-viral locations. For spherical and slightly elongated influenza virus, CD81 was localized at both the growing tip and the budding neck of the progeny viruses. CD81 knockdown led to a budding defect and resulted in elongated budding virions with a higher propensity to remain attached to the plasma membrane. Progeny virus production was markedly reduced in CD81-knockdown cells even when the uncoating defect was compensated. In filamentous virus, CD81 was distributed at multiple sites along the viral filament. Taken together, these results demonstrate important roles of CD81 in both entry and budding stages of the influenza infection cycle

    To Explain or Not to Explain: A Study on the Necessity of Explanations for Autonomous Vehicles

    Full text link
    Explainable AI, in the context of autonomous systems, like self driving cars, has drawn broad interests from researchers. Recent studies have found that providing explanations for an autonomous vehicle actions has many benefits, e.g., increase trust and acceptance, but put little emphasis on when an explanation is needed and how the content of explanation changes with context. In this work, we investigate which scenarios people need explanations and how the critical degree of explanation shifts with situations and driver types. Through a user experiment, we ask participants to evaluate how necessary an explanation is and measure the impact on their trust in the self driving cars in different contexts. We also present a self driving explanation dataset with first person explanations and associated measure of the necessity for 1103 video clips, augmenting the Berkeley Deep Drive Attention dataset. Additionally, we propose a learning based model that predicts how necessary an explanation for a given situation in real time, using camera data inputs. Our research reveals that driver types and context dictates whether or not an explanation is necessary and what is helpful for improved interaction and understanding.Comment: 9.5 pages, 7 figures, submitted to UIST202

    Hepatitis C viral evolution in genotype 1 treatment-naïve and treatment-experienced patients receiving telaprevir-based therapy in clinical trials

    Get PDF
    Background: In patients with genotype 1 chronic hepatitis C infection, telaprevir (TVR) in combination with peginterferon and ribavirin (PR) significantly increased sustained virologic response (SVR) rates compared with PR alone. However, genotypic changes could be observed in TVR-treated patients who did not achieve an SVR. Methods: Population sequence analysis of the NS3•4A region was performed in patients who did not achieve SVR with TVR-based treatment. Results: Resistant variants were observed after treatment with a telaprevir-based regimen in 12% of treatment-naïve patients (ADVANCE; T12PR arm), 6% of prior relapsers, 24% of prior partial responders, and 51% of prior null responder patients (REALIZE, T12PR48 arms). NS3 protease variants V36M, R155K, and V36M+R155K emerged frequently in patients with genotype 1a and V36A, T54A, and A156S/T in patients with genotype 1b. Lower-level resistance to telaprevir was conferred by V36A/M, T54A/S, R155K/T, and A156S variants; and higher-level resistance to telaprevir was conferred by A156T and V36M+R155K variants. Virologic failure during telaprevir treatment was more common in patients with genotype 1a and in prior PR nonresponder patients and was associated with higher-level telaprevir-resistant variants. Relapse was usually associated with wild-type or lower-level resistant variants. After treatment, viral populations were wild-type with a median time of 10 months for genotype 1a and 3 weeks for genotype 1b patients. Conclusions: A consistent, subtype-dependent resistance profile was observed in patients who did not achieve an SVR with telaprevir-based treatment. The primary role of TVR is to inhibit wild-type virus and variants with lower-levels of resistance to telaprevir. The complementary role of PR is to clear any remaining telaprevir-resistant variants, especially higher-level telaprevir-resistant variants. Resistant variants are detectable in most patients who fail to achieve SVR, but their levels decline over time after treatment

    A role for an Hsp70 nucleotide exchange factor in the regulation of synaptic vesicle endocytosis

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Neuroscience 33 (2013): 8009-8021, doi:10.1523/JNEUROSCI.4505-12.2013.Neurotransmission requires a continuously available pool of synaptic vesicles (SVs) that can fuse with the plasma membrane and release their neurotransmitter contents upon stimulation. After fusion, SV membranes and membrane proteins are retrieved from the presynaptic plasma membrane by clathrin-mediated endocytosis. After the internalization of a clathrin-coated vesicle, the vesicle must uncoat to replenish the pool of SVs. Clathrin-coated vesicle uncoating requires ATP and is mediated by the ubiquitous molecular chaperone Hsc70. In vitro, depolymerized clathrin forms a stable complex with Hsc70*ADP. This complex can be dissociated by nucleotide exchange factors (NEFs) that release ADP from Hsc70, allowing ATP to bind and induce disruption of the clathrin:Hsc70 association. Whether NEFs generally play similar roles in vesicle trafficking in vivo and whether they play such roles in SV endocytosis in particular is unknown. To address this question, we used information from recent structural and mechanistic studies of Hsp70:NEF and Hsp70:co-chaperone interactions to design a NEF inhibitor. Using acute perturbations at giant reticulospinal synapses of the sea lamprey (Petromyzon marinus), we found that this NEF inhibitor inhibited SV endocytosis. When this inhibitor was mutated so that it could no longer bind and inhibit Hsp110 (a NEF that we find to be highly abundant in brain cytosol), its ability to inhibit SV endocytosis was eliminated. These observations indicate that the action of a NEF, most likely Hsp110, is normally required during SV trafficking to release clathrin from Hsc70 and make it available for additional rounds of endocytosis.This work was supported by the National Institutes of Health (Grant #NS029051 to E.M.L. and Grant #NS078165 to J.R.M.).2013-11-0

    Structure of the Hsp110:Hsc70 nucleotide exchange machine.

    Get PDF
    Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein\u27s NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
    • …
    corecore