219 research outputs found

    GLI1-mediated regulation of side population is responsible for drug resistance in gastric cancer

    Get PDF
    Gastric cancer is the third leading cause of cancer-related mortality worldwide. Chemotherapy is frequently used for gastric cancer treatment. Most patients with advanced gastric cancer eventually succumb to the disease despite some patients responded initially to chemotherapy. Thus, identifying molecular mechanisms responsible for cancer relapse following chemotherapy will help design new ways to treat gastric cancer. In this study, we revealed that the residual cancer cells following treatment with chemotherapeutic reagent cisplatin have elevated expression of hedgehog target genes GLI1, GLI2 and PTCH1, suggestive of hedgehog signaling activation. We showed that GLI1 knockdown sensitized gastric cancer cells to CDDP whereas ectopic GLI1 expression decreased the sensitivity. Further analyses indicate elevated GLI1 expression is associated with an increase in tumor sphere formation, side population and cell surface markers for putative cancer stem cells. We have evidence to support that GLI1 is critical for maintenance of putative cancer stem cells through direct regulation of ABCG2. In fact, GLI1 protein was shown to be associated with the promoter fragment of ABCG2 through a Gli-binding consensus site in gastric cancer cells. Disruption of ABCG2 function, through ectopic expression of an ABCG2 dominant negative construct or a specific ABCG2 inhibitor, increased drug sensitivity of cancer cells both in culture and in mice. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high ABCG2 expression was associated with poor survival in the gastric cancer patients who underwent chemotherapy. Taken together, we have identified a molecular mechanism by which gastric cancer cells gain chemotherapy resistance

    A reporter system for assaying influenza virus RNP functionality based on secreted Gaussia luciferase activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza A virus can infect a wide variety of animal species including humans, pigs, birds and other species. Viral ribonucleoprotein (vRNP) was involved in genome replication, transcription and host adaptation. Currently, firefly luciferase (Fluc) reporter system was used in vRNP functional assay. However, its limitation for the testing by virus infection resulted in an increased need for rapid, sensitive, and biosafe techniques. Here, an influenza A virus UTR-driven gene reporter for vRNP assay based on secreted <it>Gaussia </it>luciferase (Gluc) activity was evaluated.</p> <p>Results</p> <p>By measuring Gluc levels in supernatants, reporter gene activity could be detected and quantitated after either reconstitution of influenza A virus polymerase complex or viral infection of 293T and A549 cells, respectively. As compared with Fluc reporter, Gluc-based reporter was heat-tolerant (65°C for 30 min) and produced 50-fold higher bioluminescent activity at 24 h posttransfection. Signals generated by Gluc reporter gene could be detected as early as 6 h post-infection and accumulated with time. Testing by viral infection, stronger signals were detected by Gluc reporter at a MOI of 0.001 than that of 1 and the effects of PB2-627K/E or amantadine on influenza vRNP activity were elucidated more effectively by the Gluc reporter system.</p> <p>Conclusions</p> <p>This approach provided a rapid, sensitive, and biosafe assay of influenza vRNP function, particularly for the highly pathogenic avian influenza viruses.</p

    Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation

    Get PDF
    AbstractPhosphate-activated mitochondrial glutaminase (GLS2) is suggested to be linked with elevated glutamine metabolism. It plays an important role in catalyzing the hydrolysis of glutamine to glutamate. The present study was to investigate the potent effect of GLS2 on radioresistance of cervical carcinoma. GLS2 was examined in 144 cases of human cervical cancer specimens (58 radioresistant specimens, 86 radiosensitive specimens) and 15 adjacent normal cervical specimens with immunohistochemistry. HeLa cells were treated with a cumulative dose of 50Gy X-rays, over 6months, yielding the resistant sub-line HeLaR. The expressions of GLS2 were measured by Western blot. Radioresistance was tested by colony survival assay. Apoptosis was determined by flow cytometry. The levels of glutathione (GSH), reactive oxygen species (ROS), NAD+/NADH ratio and NADP+/NADPH ratio were detected by quantization assay kit. Xenografts were used to confirm the effect of GLS2 on radioresistance in vivo. The expressions of GLS2 were significantly enhanced in tumor tissues of radioresistant patients compared with that in radiosensitive patients. In vitro, the radioresistant cell line HeLaR exhibited significantly increased GLS2 levels than its parental cell line HeLa. GLS2 silenced radioresistant cell HeLaR shows substantially enhanced radiosensitivity with lower colony survival and higher apoptosis in response to radiation. In vivo, xenografts with GLS2 silenced HeLaR were more sensitive to radiation. At the molecular level, knock-down of GLS2 increased the intracellular ROS levels of HeLaR exposed to irradiation by decreasing the productions of antioxidant GSH, NADH and NADPH. GLS2 may have an important role in radioresistance in cervical cancer patients

    Biological carbon pump responses to multiscale physical processes: a review of sediment trap studies in the South China Sea

    Get PDF
    Accurately assessing the capacity of the modern ocean to photosynthetically fix and sequester atmospheric CO2, termed the biological carbon pump (BCP), is a key component in studies on the marine carbon cycle and the global climate system. Particulate organic carbon (POC) flux into the ocean interior is an important indicator of the BCP strength, and it can be directly measured by sediment traps on time scales from days to years. This study has been conducted in the South China Sea (SCS) for over three decades. The SCS is one of the largest tropical marginal seas, located in the Asian monsoon region with frequent occurrence of dynamic physical processes and anthropogenic perturbations. It hosts an ideal natural laboratory to investigate the response of the BCP to multiscale physical processes. In this mini review, we briefly introduce the study history of mooring sediment traps in the SCS, synthesize the processes that regulate the temporal variability in mesopelagic POC flux, and how it is sensitive to climate changes. The time-series characteristics of the POC flux are clearly linked to primary production, as well as the key physical processes in the upper layer. The seasonal East Asian monsoon, intraseasonal eddies, aerosol deposition and interannual El Niño Southern Oscillation (ENSO) events are the main controlling factors over weekly to yearly timescales. Together, they suggest that the multiscale physical forcing in the upper layer regulates the mesopelagic POC export flux by controlling nutrient supplementation and subsequent POC production

    Correction to: Growth mechanism identification of sputtered single crystalline bismuth nanowire

    Get PDF
    The article listed above was initially published with incorrect copyright information

    Growth mechanism identification of sputtered single crystalline bismuth nanowire

    Get PDF
    Abstract(#br)Single crystalline bismuth nanowire is recently considered as one of the most attractive low dimensional materials for the exploration of exotic higher-order topological properties. However, its growth mechanism by sputtering, which is regarded as one of the most cost-effective and simplest method, is still unrevealed. In this work, a bismuth nanowire growth model based on surface diffusion driven by chemical potential difference among crystal facets is proposed for sputtering method. The morphology evolution of bismuth nanowires is captured for the first time, and three corresponding growth stages are clearly discriminated. The possible self-catalyzed, stress-driven, and screw dislocation-driven nanowire growth mechanisms are precluded separately based on the theoretical and..

    Direct deposition of anatase TiO2 on thermally unstable gold nanobipyramid: Morphology-conserved plasmonic nanohybrid for combinational photothermal and photocatalytic cancer therapy

    Get PDF
    Deposition of crystalline titanium dioxide (TiO2) on gold nanostructures has been considered as a promising strategy for near-infrared (NIR) light-activated photocatalysis. A typical route comprises pre-deposition of amorphous TiO2 on the gold surface and its ensuing crystallization by high-temperature annealing. Such condition, however, is not compatible with highly plasmonic but thermally unstable sharp-tipped gold nanostructures, causing structural disruption and plasmonic decline. Herein, we report a hybridization method excluding high-temperature annealing, i.e., direct deposition of anatase TiO2 onto sharp-tipped gold nanobipyramid (Au NBP/a-TiO2) with conserving their morphology without agglomeration via low-temperature hydrothermal reaction. In addition to keeping the plasmonic photothermal performance, Au NBP/a-TiO2 exhibits enhanced photocatalytic generation of reactive oxygen species in response to the NIR excitation, evidencing the efficient injection of hot electrons from the Au NBP to the anatase shell. In vitro and in vivo studies revealed that the efficient photocatalytic/photothermal responses of Au NBP/a-TiO2, along with dispersion stability in biological media and minimal toxicity, hold potential for synergistic photothermal and photodynamic therapy. We believe that the low-temperature synthetic method introduced here might offer a general way of crystalline deposition of TiO2 on a variety of gold nanostructures, broadening the spectrum of NIR-responsive photocatalytic hybrid nanostructures for biomedical applications

    Mutations in Polymerase Genes Enhanced the Virulence of 2009 Pandemic H1N1 Influenza Virus in Mice

    Get PDF
    Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1), A/Sichuan/1/2009 (SC), were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT) or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis
    • …
    corecore