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Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources,
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Accurately assessing the capacity of the modern ocean to photosynthetically fix

and sequester atmospheric CO2, termed the biological carbon pump (BCP), is a

key component in studies on the marine carbon cycle and the global climate

system. Particulate organic carbon (POC) flux into the ocean interior is an

important indicator of the BCP strength, and it can be directly measured by

sediment traps on time scales from days to years. This study has been conducted

in the South China Sea (SCS) for over three decades. The SCS is one of the largest

tropical marginal seas, located in the Asian monsoon region with frequent

occurrence of dynamic physical processes and anthropogenic perturbations. It

hosts an ideal natural laboratory to investigate the response of the BCP to

multiscale physical processes. In this mini review, we briefly introduce the study

history of mooring sediment traps in the SCS, synthesize the processes that

regulate the temporal variability in mesopelagic POC flux, and how it is sensitive

to climate changes. The time-series characteristics of the POC flux are clearly

linked to primary production, as well as the key physical processes in the upper

layer. The seasonal East Asian monsoon, intraseasonal eddies, aerosol deposition

and interannual El Niño Southern Oscillation (ENSO) events are the main

controlling factors over weekly to yearly timescales. Together, they suggest

that the multiscale physical forcing in the upper layer regulates the mesopelagic

POC export flux by controlling nutrient supplementation and subsequent

POC production.
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Introduction

The biological carbon pump (BCP) is a suite of processes

collectively leading to the net uptake of atmospheric CO2. It

transfers dissolved inorganic carbon to organic carbon through

photosynthesis by phytoplankton in the sunlit surface ocean at a

rate of ~50 GtC/yr (Chavez et al., 2011; Johnson and Bif, 2021), and

then delivers part of the produced particulate organic carbon (POC)

into the ocean interior (Sigman and Boyle, 2000). When POC settles

to depths below the mesopelagic zone (i.e., beyond about 1000 m), it

can be stored and isolated from the atmospheric carbon pool for

time scales of hundreds of years or even longer (Kwon et al., 2009).

Without these processes, the atmospheric CO2 content would be

200 ppm higher than it is today (Parekh et al., 2006; Henson et al.,

2019). The biogenic particles that sink out of the surface layer not

only fuel the dark ocean and benthic ecosystem but also play a vital

role in the distributions of oxygen, carbon and nutrients. Thus, it is

important to develop an understanding of the layout of global deep

ocean POC fluxes over a range of spatial and temporal scales.

In this context, a prevalent mooring sediment trap was invented

in the 1970s to intercept sinking particles settling into the ocean

interior for up to a year based on a consecutive time series sequence

to better understand its composition, transport and transformation in

the oceans (Honjo et al., 1980; Deuser et al., 1981). This device not

merely provides a direct measurement of sinking particle flux over a

range of time scales but also supplies intact time-series samples for

further multidisciplinary analysis, such as chemical components (Lee,

2019) and plankton taxonomy (Takahashi and Honjo, 1981;

Takahashi, 1986) in sinking particles. Therefore, an internationally

coordinated global array of sediment traps was proposed as a major

undertaking of the Joint Global Ocean Flux Study (JGOFS) project,

which aimed to more accurately assess and better understand the

processes controlling regional to global and seasonal to interannual

carbon fluxes among the atmosphere, surface ocean and ocean

interior, as well as their sensitivities to climate changes. Overall,

hundreds of sediment traps have been widely deployed in different

ocean regions worldwide for multidisciplinary objectives since 1983.

A comprehensive understanding of global POC fluxes to the ocean

interior as well as associated biogeochemical parameters has benefited

from these projects. Clear imparities have been discerned in POC

fluxes between regions and basins, much greater emphasis was placed

on marginal seas for the disproportionate importance of POC flux

within their limited sea surface area (Muller-Karger et al., 2005;

Honjo et al., 2008).

The South China Sea (SCS) is one of the largest world’s semi-

enclosed marginal seas, situated in the East Asian monsoon system,

between theWestern PacificWarm Pool and Tibet Plateau, with only

one major deep channel, the Luzon Strait (>2200 m), to effectively

exchange with the western Pacific. It consists vast shelves on the

north and south sides, steep slopes on the west and east sides, and

deep basins with a maximum depth reaching 4700 m in the center

(Ning et al., 2004). The basin scale circulation (Wyrtki, 1961) and

physical-biogeochemical condition of the SCS are mainly governed

by the strong forcing of alternating monsoons and sensitive to climate
Frontiers in Marine Science 02
variations (Liu et al., 2002; Liu et al., 2013; Ning et al., 2004). Besides,

randomly occurring mesoscale eddies (Xiu et al., 2010; Xiu and Chai,

2011), dust deposition (Wang et al., 2012), as well as the inter-annual

El Niño (Liu et al., 2013) would also affect its biogeochemistry. In

order to tease out BCP characteristics and responses to these

multiscale processes, the sediment trap studies have been

conducted in the SCS for over 40 years. In September 1987, the

first successful mooring deployment of sediment traps in the SCS was

executed during the joint Chinese-German R/V Sonne cruise 50. A

project known as “Modern Marine sedimentary processes in the

South China Sea” was proposed as one of the main purposes of the

cruise within a scientific cooperation framework between the State

Oceanic Administration (China) and the Federal Ministry of

Research and Technology in the field of marine geosciences and

technology (Germany). This particle flux-oriented project lasted for

ten years, subsequently, eight joint cruises were conducted, and a total

of 12 sediment traps were deployed and retrieved in the northern,

central and western (upwelling area off Vietnam) SCS. This project

followed the forefront of international marine science research and

was considered to be part of the JGOFS program at that time

(Wiesner et al., 1996). In the following decades, more sediment

traps were deployed by several universities and institutes to extend

the long-term observations over the SCS basin, broaden the research

area and simultaneously enrich multiparameter investigations to

determine the sinking particle components and fluxes (Lahajnar et

al., 2007; Gaye et al., 2009; Ho et al., 2010; Schröeder et al., 2015;

Dong et al., 2016; Li J. et al., 2022).

So far, the researches move forward on the mechanisms that

regulate the dynamics of vertically settling particle fluxes in the deep

SCS (Ran et al., 2015; Li et al., 2017; Zhang et al., 2019; Tan et al.,

2020; Li H. et al., 2022), but a comprehensive understanding is still

lacking. In this context, we firstly synthesize the reported results to

introduce the general characteristics of BCP in the mesopelagic SCS,

then highlight how key physical processes occurring from

intraseasonal to interannual time scales control the mesopelagic

POC flux, and finally examine the prospects for future research in

this area.
BCP characteristics in the
mesopelagic layer

Coupled trends between the mesopelagic
and upper layers

Literature data derived from sediment trap studies (Details of

data source and compilation can be found in Supplementary

material) have been complied to show a general layout for total

mass flux (TMF) and POC flux at mesopelagic SCS of current stage.

On average, the TMF at ~1000 m depth ranges from 66.3 ± 16.2 to

558.9 ± 446.0 mg m−2 d−1, while the POC flux varies from 3.4 ± 1 to

14.6 ± 10.3 mg m−2 d−1. Both the TMF and POC flux decrease from

the slope to the deep basin, with relatively higher values in the

western boundary and the lowest values in the central basin,
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showing a consistent spatial pattern with the annual mean Chl-a

derived from satellite sensors (Figure 1A). Compared with the

global synthetic data of POC flux at 2000 m from JGOFS (Honjo

et al., 2008), the POC flux in SCS is obviously higher than those in

the Pacific Warm Pool (0.8 mg m−2 d−1), but lower than those in the

divergent Arabian Sea (19.9 mg m−2 d−1). Temporally, one-year

consecutive records (Zhang et al., 2019; Tan et al., 2020), multiyear

time series (Lui et al., 2018) and climatological results (Li et al.,

2017) have all confirmed that the variability in sinking POC in the

mesopelagic layer is synchronized with the overlying Chl-a changes.

In addition to POC, calcium carbonate (CaCO3) and opal are

other two main biogenic components, which refer to biogenic

minerals, and these are mainly sourced from the skeletons of

calcareous and siliceous plankton, respectively. Significant

relationships between biogenic minerals, POC and TMF have

been observed in the mesopelagic SCS (Li et al., 2017; Zhang

et al., 2019; Tan et al., 2020). In general, the CaCO3 and opal

fluxes exhibit a similar temporal pattern to that of POC flux at a

certain depth for a given station (Honjo et al., 2008 and references

therein); in turn, they act as vehicles and protection shielding for
Frontiers in Marine Science 03
organic matter, increasing the settling rates and potentially

decreasing degradation rates (Armstrong et al., 2002; Francois

et al., 2002). Microscopic inspections of siliceous and calcareous

plankton in sediment trap samples exhibited higher abundance

during productive seasons with larger export fluxes and less

abundance during periods of low productivity and fluxes (Chen et

al., 2007; Ran et al., 2015; Priyadarshani et al., 2019; Ladigbolu et al.,

2020). This biological information remaining in the mesopelagic

particles is consistent with the previously reported significant

temporal variations in phytoplankton biomass and community

structures in the euphotic layer (Ning et al., 2004).
The impact of lateral transport on BCP
export components

Notably, lithogenic matter occupies a large proportion of

sinking particles (Jennerjahn et al., 1992; Zhang et al., 2019; Tan

et al., 2020; Li H. et al., 2022), which raises the question of whether

there exists strong advection of heterochthonous material in the
A

C

B

FIGURE 1

Characteristics of mesopelagic particulate organic carbon (POC) flux from the sediment trap observations of South China Sea. (A) illustrates the spatial
distribution of mesopelagic POC flux and surface chlorophyll a (Chl-a) content. The green column height represents annual average POC flux in mg
m−2 d−1 at mesopelagic layer, the sampling depths labelled in the columns. The POC data are derived from individual published papers with detailed
values and station information listed in Supplementary Table S1. The Chl-a distribution is the multi-year averaged result (from 2002 to 2022) of the
annual mean surface data in mg m−3, which derived from Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua satellite (https://oceancolor.
gsfc.nasa.gov/l3/). The black solid arrow represents the surface circulation during northeast monsoon period (NEM SC), the black dashed arrow
represents the surface circulation during southwest monsoon period (SWM SC), and purple arrows represent the Kuroshio Current. (B) Climatology of
POC flux, opal flux, CaCO3 flux, and surface Chl-a at station SCS-C (Li et al., 2017). Yellow and gray shades indicate monsoon and inter-monsoon
periods, respectively. (C) shows time series results of monthly mean POC flux, POC flux anomaly and opal flux anomaly during 1992-1999 at station
SCS-C (Li et al., 2017). The green indicates eddy periods with large flux anomalies, whilst purple and cyan indicate 1997/1998 El Niño and 1998/1999
La Niña events, respectively.
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water column of SCS basin. Micropaleontological investigations

have provided some evidences. For example, extinct coccoliths were

inspected as a perennial component in the mesopelagic sinking

particles from the northern SCS basin, with average proportions of

3.3-5.1% in the annual total coccolith flux. These extinct coccoliths

probably sourced from the Miocene and remaining in the sediment

cover to the west and south of the Dongsha Islands, which somehow

lateral transported to the northern basin (Priyadarshani et al.,

2019). Again groups of benthic and freshwater diatoms were also

found in the trap samples from the northwestern SCS, with the

abundances of 1.5-6.9% (Ran et al., 2022). However, the lateral

contribution is currently hard to quantify due to the lack of

information as to the abundance of benthic diatoms and

reworked coccoliths in the surface sediment in the northern and

northwestern SCS.

Based on the analysis of POC source indicators, the C/N mole

ratio and dual carbon isotope compositions (d13Corg and

radiocarbon content), the sinking POC characteristics in the

mesopelagic layer were relatively homogeneous and comparable

with the POC collected from the overlying surface water (Liu et al.,

2007; Zhang et al., 2019; Zhang et al., 2022). Estimates of binary

mixing end-member models demonstrated that POC incorporated

in sinking particles was predominantly derived from primary

productivity in the overlying surface ocean, no matter in the slope

area (Zhang et al., 2019) or at the basin station (Zhang et al., 2022).

The relatively high proportion of lithogenic matter, as well as the
Frontiers in Marine Science 04
covarying trend between lithogenic matter and POC flux, is likely

due to scavenging by sinking organic matter, and in turn, the

lithogenic matter acts as ballast material to accelerate the settling

process, especially during the highly productive seasons (Zhang

et al., 2019). The contribution of lateral transported organic carbon

is reported to be much more important in the offshore sediment or

in the sinking particles collected from the near bottom layers (Kao

et al., 2014; Blattmann et al., 2018; Wei et al., 2020), but the export

flux of sinking biogenic matter in the mesopelagic layer of SCS basin

is overall mainly controlled by the productive processes in the

overlying layer with the nonsignificant impact of lateral advection.
Multiscale mechanisms of
high-flux events

The SCS is a typical well-stratified oligotrophic and

unproductive sea, except for its coastal areas (Wong et al., 2007;

Du et al., 2017), thereby the nutrient influx into the euphotic zone

introduced by multiple physical forcings will determine the

magnitude of primary production and the subsequent export flux.

These physical forcings have been distinguished by an axis of time

scales, ranging from intraseasonal episodic events to seasonal

monsoon and interannual El Niño Southern Oscillation (ENSO)

events (Figure 2), which mediate the dynamic temporal variability

in mesopelagic particle export flux.
FIGURE 2

Schematic diagram of the multi-scale physical processes on particle export flux in the SCS basin: from interannual ENSO, to seasonal monsoon,
then to intra-seasonal processes, such as upwelling, dust events, and mesoscale eddies. NE represents northeast, SW represents southwest, NEC
represents north equatorial current.
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Seasonal transition

Overall, the East Asian monsoon has been regarded as a first-

order control on BCP strength in the SCS. It not only drives the

basin-scale background circulation (Wyrtki, 1961; Hu et al., 2000)

but also profoundly influences biogeochemical processes and

particle export (Ning et al., 2004). Clear seasonal variabilities in

total mass and main component (POC, CaCO3, opal and amino

acid) fluxes of trap-collected particles correspond to monsoon

transition. Generally, the values of POC flux in the northern SCS

basin are always highest in winter but remain at a relatively low level

during summer and the intermonsoon seasons (Wiesner et al.,

1996; Lui et al., 2018). The prevailing, strong northeast wind

coupled with extensive cooling in winter enhances vertical mixing

(i.e., r2 = 0.61, N=19, p<0.001, Tseng et al., 2009a), which entrains

more subsurface nutrient into the upper layer (Tseng et al., 2005;

2009) and then fuels photosynthetic productivity (Chen, 2005; Liu

et al., 2013; Wong et al., 2015; Du et al., 2017). Such controlling

mechanism of mixed layer depth has also been quantitatively

validated in further studies, and corresponding biogenic

parameters including Chl-a, net primary production as well as all

components of mesopelagic particles show significant correlations

with it (Table 3 in Tan et al. (2020); Table 1 in Li et al. (2017).

Statistical result indicates that the biogenic particles in winter

accounts for nearly half of the annual measured fluxes (41.5-

48.9%). In the central SCS, except for the winter peak, there is a

secondary peak during the southwest monsoon period, showing a

distinct bimodal seasonality in the monthly multiyear average POC

and opal fluxes (Li et al., 2017; Figure 1B). The fluxes of total mass,

POC and foraminifera at a station located further south also

demonstrate a covaried bimodal pattern, with maximum values

during monsoon seasons, and the values in summer seem to be

slightly higher than those in winter (Wan et al., 2010). The spatial

differences in the seasonal transition pattern of the particle export

flux might be highly correlated with the strength discrepancy of the

East Asian monsoon from north to south across the SCS.

Significantly, several extremely high-flux peaks coupled with

cyclonic eddies have been observed in the long-term records of a

central station of the SCS (Li et al., 2017; Figure 1C). Cyclonic eddies,

typically upwelling nutrient-rich subsurface water and stimulating

phytoplankton blooms (Tang et al., 1999; Ning et al., 2004), are

mainly generated during the northeastern monsoon period (Wang

et al., 2003). Their contributions to biogenic particle flux may overlap

the regular winter flux peak, with higher mesopelagic POC and opal

fluxes of 41% and 116% respectively, compared with fluxes during

non–cyclonic eddy periods (Li et al., 2017). Therefore, the seasonal

pattern of biogeochemical responses in the SCS cannot be solely

attributed to the influence of the monsoon transition, winter cyclonic

eddies would amplify the seasonal particle export cycle.
Intraseasonal episodic events

The temporal variability in biogenic particle flux does not always

follow its climatological seasonal pattern in the SCS. In addition to the

northeast monsoon maxima, some discrete high-flux events have been
Frontiers in Marine Science 05
observed in both the northwestern slope and the northern basin (Ran

et al., 2015; Zhang et al., 2019; Tan et al., 2020). These episodic flux

pulses are likely to be driven by randomly occurring intraseasonal

physical processes, such as subsurface upwelling, aerosol deposition or

mesoscale eddies. Local upwelling along the western boundary of the

SCS (e.g., the northern shelf and the Vietnam coast) is probably

generated by southwest winds during the summer monsoon. These

intraseasonal processes may serve to provide “new” nutrients from

underlying water or atmospherically deposition into the euphotic

zone, thereby stimulating phytoplankton growth and a subsequent

particle rainout. In contrast, the occasional passage of anticyclonic

eddies may likely suppress the subsurface nutrient supply, which

would substantially reduce primary production and subsequent export

flux (Tan et al., 2020). As statistically estimated, three discrete high-

flux events in the northwestern SCS determined by upwelling, aerosol

deposition, and the northeast monsoon occupied 40% of the total

sampling period but contributed nearly 80% of the biogenic particles

(Zhang et al., 2019). Notably, the events contributed nearly equally to

the total POC flux with their own unique biogeochemical overprints,

implying that in the SCS, the intraseasonal physical processes might be

as important locally as the seasonal monsoon in modulating the

strength of the BCP.
Interannual ENSO

ENSO is a recurring ocean-atmosphere coupled phenomenon

that occurs across the tropical Pacific, with extreme warmer (El

Niño) and cooler phases (La Niña) that dominate the global weather

and climate patterns at the interannual time scale. In 2009, Tseng

et al. proposed that winter monthly Chl-a (and integrated primary

production) in the northern SCS decreased by 42% (and 42%) and

13% (and 10%), respectively, during two El Niño events (1997/1998

and 2002/2003). The reduction was attributed to the diminished

vertical mixing and strengthened stratification by statistical analysis

(Tseng et al., 2009a). Later studies have further elucidated that

ENSO could impact the SCS biogeochemical conditions not only via

abnormal changes in atmospheric forcing (wind speed and heat

flux), but also through basin-scale circulation (Kuroshio and SCS

throughflow) (Xiao et al., 2017), ultimately resulting in an

asymmetric response in both surface Chl-a and mesopelagic flux

during the 1997-1999 ENSO cycle (Liu et al., 2013; Li H. et al.,

2022). This response is different from the general responses in the

equatorial Pacific Ocean: the BCP weakens during El Niño events

and strengthens during La Niña events (Chavez et al., 1999; Gierach

et al., 2012; Brainard et al., 2018).

By extension, during the 1997/1998 super El Niño event, weak

wind and intense solar radiation strengthened the upper water

stratification, the Luzon Strait transport was therefore enhanced and

intensified the oligotrophic Kuroshio intrusion to dilute the nutrient

inventory in the SCS basin (Du et al., 2013). Together, compared with

the climatological means, these processes led to impoverished

bioavailable nutrients for photosynthetic productivity (decreased by

17%), and in particular, they inhibited diatom growth (opal flux

decreased by 31.7%), thus resulting in an inefficient BCP with low

particle export flux (Li H. et al., 2022). When the climate conditions
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oscillated to the La Niña phase in 1998/1999, the atmospheric forcing

and the ongoing water mixing rapidly recovered to the normal state,

but no obvious biological activity occurred. The net primary

production and mesopelagic POC flux were still lower (13% and

10.9%, respectively) than the climatological means (Li H. et al.,

2022). Although the Kuroshio intrusion was weakened, the

thermocline/nutricline deepened due to basin-scale downwelling

circulation or episodic warm eddies (Wang et al., 2002), which

debilitated the nutrient supply, subsequently restraining the rebound

of primary production and deep biogenic export flux (Liu et al., 2013;

Li H. et al., 2022). However, the studies explained only the extreme

event within a whole ENSO cycle, from El Niño to La Niña, while

dynamic ENSO events with individual phases may present processes

that respond differently. For example, the interannual variation in Chl

is modulated by the intensity of the monsoon and mesoscale eddies

which exhibits a close relationship with ENSO (Wang et al., 2006;

Tseng et al., 2009b; He et al., 2016; Xiu et al., 2018). As extreme El Niño

events are predicted to occur more often due to anthropogenically

forced global warming (Cai et al., 2014), systematic studies are needed

to evaluate the alterations of marine ecosystems and carbon cycles in

response to the combined multiscale physical forcings in the SCS.
Synthesis and perspectives

The current research suggests that temporal variabilities in

mesopelagic biogenic particle export are tightly coupled with the

biological responses to nutrient influx into the euphotic zone, which

is mediated by multiple physical forcings in the overlying SCS.

However, sinking organic matter in the mesopelagic layer integrates

an overlay of multiple physical and biological processes, which are

intertwined from production to sedimentation. The underlying

mechanisms and processes delivering these particles to the

mesopelagic zone are complicated and have rarely been explored in

the SCS, particularly the biogeochemical controls, which hinder

mechanistic reproductions and predictions of the magnitude and

efficiency of downward POC export. To better understand BCP

processes and provide reliable parameterized conditions for coupled

physical/biogeochemical models, the following aspects still need to be

understood. First, systematic studies on coupled physical and

biological processes based on high-resolution sampling, e.g.,

multidisciplinary integrated stationary moorings, could provide

more refined insights into the underlying mechanisms of ecosystem

processes and POC dynamics, as reviewed in this study. Second,

research on biogeochemical controls on sinking particle dynamics

should be conducted, particularly in the under-sampled twilight zone,

with processes, such as aggregation and disaggregation, respiration

and remineralization, the role of zooplankton, and food web
Frontiers in Marine Science 06
interactions. Finally, the characteristics of sinking particles with

particle sizes, phytoplankton structures, organic compounds, fecal

pellets, biominerals and clay minerals, must be determined in future

studies since they all appear to affect the POC transfer efficiency to the

deep ocean, especially the minerals which subsequently act as vehicles

for particle transport.
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