29 research outputs found

    A comprehensive evaluation of physical and environmental performances for wet-white leather manufacture

    Get PDF
    This paper presents the comprehensive evaluation results of physical and environmental performances for a novel wet-white (chrome-free) leather manufacturing. The tanning process is optimized as 15 wt% tannic acid (TA) combination with 4 wt% Laponite nanoclay, giving the leather with shrinkage temperature (Ts) above 86 °C. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements indicate that Laponite can be evenly and tightly bound within the leather matrix, which is further confirmed by scanning electron microscopy and energy dispersive X-ray (SEM-EDX) spectroscopy analysis. The resultant wet-white leathers have reasonable good physical properties that can meet the standard requirements for furniture leather without containing hazardous Cr(VI) and formaldehyde. Further life cycle assessment (LCA) studies shows that tanning process is the main contributor to environmental impact categories in the wet-white tanning process, and tannic acid is the most significant substance factor. Compared to conventional chrome tanning, the wet-white tanning process exhibits much lower abiotic depletion potential (ADP), and reduced global warming potential (GWP) and human toxicity potential (HTP) impacts due to the nature of vegetable tanning; whereas, GWP excluding biogenic carbon and energy consumption are higher owing to prolonged run time.Peer ReviewedPostprint (published version

    Topological Properties of Brain Structural Networks Represent Early Predictive Characteristics for the Occurrence of Bipolar Disorder in Patients With Major Depressive Disorder: A 7-Year Prospective Longitudinal Study

    Get PDF
    Bipolar disorder (BD) and major depressive disorder (MDD) are associated with different brain functional and structural abnormalities, but BD is hard to distinguish from MDD until the first manic or hypomanic episode. The aim of this study was to examine whether the topological properties of the brain structural network could be used to differentiate BD from MDD patients before their first manic/hypomanic episode. Diffusion tensor images were collected from 80 MDD patients and 53 healthy controls (HCs); 78 patients completed the follow-up study lasting 7 years. Among them, 12 patients were converted to BD and 64 patients remained MDD. Topological properties of the brain structural networks at baseline were compared among patients who converted to BD, patients who did not develop BD, and HCs. Patients who converted to BD displayed reduced nodal local efficiency in the left inferior frontal gyrus(IFG) compared with HCs and patients who did not convert to BD. There was no significant difference in the nodal global efficiency among the three groups. The findings suggest that the nodal local efficiency in the left IFG could serve as a potential biomarker to predict the conversion of MDD to BD before the occurrence of the first manic or hypomanic episode

    Abnormal Alterations of Regional Spontaneous Neuronal Activity in Inferior Frontal Orbital Gyrus and Corresponding Brain Circuit Alterations: A Resting-State fMRI Study in Somatic Depression

    Get PDF
    Background: Major depressive disorders often involve somatic symptoms and have been found to have fundamental differences from non-somatic depression (NSD). However, the neural basis of this type of somatic depression (SD) is unclear. The aim of this study is to use the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) analyses to examine the abnormal, regional, spontaneous, neuronal activity and the corresponding brain circuits in SD patients.Methods: 35 SD patients, 25 NSD patients, and 27 matched healthy controls were selected to complete this study. The ALFF and seed-based FC analyses were employed, and the Pearson correlation was determined to observe possible clinical relevance.Results: Compared with NSD, the SD group showed a significant ALFF increase in the right inferior temporal gyrus; a significant ALFF decrease in left hippocampus, right inferior frontal orbital gyrus and left thalamus; and a significant decrease in the FC value between the right inferior frontal orbital gyrus and the left inferior parietal cortex (p < 0.05, corrected). Within the SD group, the mean ALFF value of the right inferior frontal orbital gyrus was associated with the anxiety factor scores (r = –0.431, p = 0.010, corrected).Conclusions: Our findings suggest that abnormal differences in the regional spontaneous neuronal activity of the right inferior frontal orbital gyrus were associated with dysfunction patterns of the corresponding brain circuits during rest in SD patients, including the limbic-cortical systems and the default mode network. This may be an important aspect of the underlying mechanisms for pathogenesis of SD at the neural level

    Differentiation of Transformed Bipolar Disorder From Unipolar Depression by Resting-State Functional Connectivity Within Reward Circuit

    Get PDF
    Previous studies have found that neural functional abnormalities detected by functional magnetic resonance imaging (fMRI) in brain regions implicated in reward processing during reward tasks show promise to distinguish bipolar from unipolar depression (UD), but little is known regarding resting-state functional connectivity (rsFC) within the reward circuit. In this study, we investigated neurobiomarkers for early recognition of bipolar disorder (BD) by retrospectively comparing rsFC within the reward circuit between UD and depressed BD. Sixty-six depressed patients were enrolled, none of whom had ever experienced any manic/hypomanic episodes before baseline. Simultaneously, 40 matched healthy controls (HC) were also recruited. Neuroimaging data of each participant were obtained from resting-state fMRI scans. Some patients began to manifest bipolar disorder (tBD) during the follow-up period. All patients were retrospectively divided into two groups (33 tBD and 33 UD) according to the presence or absence of mania/hypomania in the follow-up. rsFC between key regions of the reward circuit was calculated and compared among groups. Results showed decreased rsFC between the left ventral tegmental area (VTA) and left ventral striatum (VS) in the tBD group compared with the UD group, which showed good accuracy in predicting diagnosis (tBD vs. UD) according to receiver operating characteristic (ROC) analysis. No significant different rsFC was found within the reward circuit between any patient group and HC. Our preliminary findings indicated that bipolar disorder, in early depressive stages before onset of mania/hypomania attacks, already differs from UD in the reward circuit of VTA-VS functional synchronicity at the resting state

    Electric-field-induced selective catalysis of single-molecule reaction

    Get PDF
    随着单分子电学检测技术的迅速发展,分子电子学的研究不再局限于分子电子学器件的构筑及其电学性质的测量,而且扩展到单分子尺度化学反应过程的探索。然而目前相关的研究仍然局限于理论计算方面,在单分子尺度上实时监测和调控化学反应的活性和选择性是化学领域的长期目标和挑战。针对这一挑战,洪文晶教授课题组与程俊教授课题组合作,自主研发了精密科学仪器,将单个有机分子定向连接在两个末端尺寸为原子级的电极之间,解决了化学反应中分子取向控制的问题.理论计算结果证实了定向电场可以有效地稳定化学反应的过渡态,从而降低反应能垒。该研究工作在化学化工学院洪文晶教授、程俊教授、能源材料化学协同创新中心(iChEM)刘俊扬副研究员的共同指导下完成,由硕士研究生黄晓艳、iChEM博士研究生唐淳、博士研究生李洁琼以及兰州大学的陈力川博士作为共同第一作者,化学化工学院师佳副教授、陈招斌高级工程师、夏海平教授和田中群教授,萨本栋微纳研究院杨扬副教授、环境与生态学院白敏冬教授以及兰州大学张浩力教授参与了研究工作的讨论并给予指导,博士后乐家波、博士研究生郑珏婷、张佩(已毕业)、李瑞豪、李晓慧也参与了研究工作。Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in bottles, OEEFs are found to selectively catalyze the aromatization reaction by one order of magnitude owing to the alignment of the electric field on the reaction axis. Meanwhile, the Diels-Alder reaction remained unchanged since its reaction axis is orthogonal to the electric fields. This orientation-selective catalytic effect of OEEFs reveals that chemical reactions can be selectively manipulated through the elegant alignment between the electric fields and the reaction axis.This work was supported by the National Key R&D Program of China (2017YFA0204902), the National Natural Science Foundation of China (21722305, 21703188, 21673195, 21621091, 51733004, 51525303, and 91745103), the China Postdoctoral Science Foundation (2017M622060), and the Young Thousand Talents Project of China. 该工作得到国家自然科学基金委(21722305、21703188、21673195、51733004、51525303、91745103),国家重点研发计划课题(2017YFA0204902),中国博士后面上基金(2017M622060)的资助,以及固体表面物理化学国家重点实验室、醇醚酯化工清洁生产国家工程实验室、能源材料化学协同创新中心的支持

    Consistent Construction of Density Matrix from Surface Hopping Trajectories

    No full text
    Proper construction of density matrix based on surface hopping trajectories remains a difficult problem. Due to the well-known overcoherence in traditional surface hopping simulations, the electronic wavefunction cannot be used directly. In this work, we propose a consistent density matrix construction method, which takes the advantage of occupation of active states to rescale the coherence calculated by wavefunctions and ensures the intrinsic consistency of density matrix. This new trajectory analysis method can be used for both Tully’s fewest switches surface hopping (FSSH) and our recently proposed branching corrected surface hopping (BCSH). As benchmarked in both one- and two-dimensional standard scattering models, the new approach combined with BCSH trajectories achieves highly accurate time-dependent spatial distributions of adiabatic populations and coherence compared with exact quantum results

    Rapid Design Method of Heavy-Loaded Propeller for Distributed Electric Propulsion Aircraft

    No full text
    On Distributed Electric Propulsion (DEP) aircraft, the deployment of numerous high-lift propellers with small diameters on the wing’s leading edge significantly enhances lift during low-speed flight. The increase in the number of propellers leads to a decrease in diameter, which increases the disc loading. In this paper, a rapid design method applicable to heavy-loaded propellers is developed and does not require iterative calculations compared to traditional heavy-loaded propeller design methods, enabling rapid completion of the propeller design. The results of CFD computation show that the relative thrust error of the method proposed in this paper is within 5% for disc loading ranging from 600 Pa to 1400 Pa, features a high-accuracy design of propellers with required thrust, and high thrust coefficients are achieved within large advance ratio range

    A comprehensive evaluation of physical and environmental performances for wet-white leather manufacture

    No full text
    This paper presents the comprehensive evaluation results of physical and environmental performances for a novel wet-white (chrome-free) leather manufacturing. The tanning process is optimized as 15 wt% tannic acid (TA) combination with 4 wt% Laponite nanoclay, giving the leather with shrinkage temperature (Ts) above 86 °C. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements indicate that Laponite can be evenly and tightly bound within the leather matrix, which is further confirmed by scanning electron microscopy and energy dispersive X-ray (SEM-EDX) spectroscopy analysis. The resultant wet-white leathers have reasonable good physical properties that can meet the standard requirements for furniture leather without containing hazardous Cr(VI) and formaldehyde. Further life cycle assessment (LCA) studies shows that tanning process is the main contributor to environmental impact categories in the wet-white tanning process, and tannic acid is the most significant substance factor. Compared to conventional chrome tanning, the wet-white tanning process exhibits much lower abiotic depletion potential (ADP), and reduced global warming potential (GWP) and human toxicity potential (HTP) impacts due to the nature of vegetable tanning; whereas, GWP excluding biogenic carbon and energy consumption are higher owing to prolonged run time.Peer Reviewe
    corecore