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Background: Major depressive disorders often involve somatic symptoms and have been 
found to have fundamental differences from non-somatic depression (NSD). However, 
the neural basis of this type of somatic depression (SD) is unclear. The aim of this study 
is to use the amplitude of low-frequency fluctuation (ALFF) and functional connectivity 
(FC) analyses to examine the abnormal, regional, spontaneous, neuronal activity and the 
corresponding brain circuits in SD patients.

Methods: 35 SD patients, 25 NSD patients, and 27 matched healthy controls were 
selected to complete this study. The ALFF and seed-based FC analyses were employed, 
and the Pearson correlation was determined to observe possible clinical relevance.

Results: Compared with NSD, the SD group showed a significant ALFF increase in 
the right inferior temporal gyrus; a significant ALFF decrease in left hippocampus, right 
inferior frontal orbital gyrus and left thalamus; and a significant decrease in the FC value 
between the right inferior frontal orbital gyrus and the left inferior parietal cortex ( p < 0.05, 
corrected). Within the SD group, the mean ALFF value of the right inferior frontal orbital 
gyrus was associated with the anxiety factor scores (r = –0.431, p = 0.010, corrected).

Conclusions: Our findings suggest that abnormal differences in the regional spontaneous 
neuronal activity of the right inferior frontal orbital gyrus were associated with dysfunction 
patterns of the corresponding brain circuits during rest in SD patients, including the 
limbic-cortical systems and the default mode network. This may be an important aspect 
of the underlying mechanisms for pathogenesis of SD at the neural level.

Keywords: somatic depression, resting-state functional magnetic resonance imaging, amplitude of low-frequency 
fluctuation, functional connectivity, limbic-cortical network, default mode network
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INTRODUCTION

A major depressive disorder (MDD) is characterized by 
the presence of a depressive mood, a loss of interest or 
pleasure, psychomotor changes, guilt, worthlessness and 
sleep abnormalities, and it is one of the most common mood 
disorders (1). An MDD that is accompanied by somatic 
symptoms, including fatigue, appetite and sleep disturbance, 
was defined by Silverstein as somatic depression (SD) (2). It 
has been found that SD differs from non-somatic depression 
(NSD) in regards to the gender ratio (3–5), developmental 
patterns (6), and awareness of behavioural errors (7). In 
addition, in the Star*D study, the response to biological-based 
treatments, including Citalopram, Sertraline, and others, was 
better for NSD than for SD (8). Thompson and Bland found 
that the SD hypothesis can only account for a relatively small 
amount of the depression variance (9). One interpretation is 
that SD may be rooted in psychosocial forces while NSD may 
be rooted more strongly in genetic and endogenous forces (6). 
In individuals with MDD, the somatic symptoms appear to 
be maintained even in the absence of explicit environmental 
stimuli. The perpetuation of SD by the brain is still not well 
understood. However, Geng et al. found that SD exhibits 
abnormal regional homogeneity in the frontal and temporal 
regions (5). Thus, the somatic-related differences in MDD may 
be linked to a stronger neurobiological diathesis. Therefore, 
functional neuroimaging offers potential insights into the 
associated neural mechanisms.

Since the study by Biswal et al. (10), resting-state functional 
magnetic resonance imaging (fMRI) has become an increasingly 
popular technique to study mental diseases. In particular, it 
has been widely employed to investigate the neuropathology of 
depression. From previous reports, it was found that depressed 
patients exhibit abnormal activation in the cortical or limbic 
regions (11–13). A meta-analysis of MDD revealed alterations 
in the spontaneous activity of multifocal brain areas in MDD 
subjects compared to healthy controls, including in the dorso-
lateral prefrontal cortex, superior frontal gyrus, orbitofrontal 
cortex, superior and middle temporal gyrus, insula, precuneus, 
striatum, thalamus, precuneus, posterior cingulate cortex, 
hippocampus and cerebellum (11). Previous studies also 
suggested the presence of dysfunctions in brain networks of 
SD patients, such as the default mode network (DMN), the 
ventromedial prefrontal network, the left fronto-parietal and 
right fronto-parietal networks, the default network, the salience 
network (14) and the prefrontal-limbic-thalamic networks 
(15, 16). Both these results imply that multiple network circuit 
dysregulations exist in patients with depression.

Previous fMRI studies suggest that there are several 
associations between somatic symptoms and certain brain region 
abnormalities. Sleep disturbances are linked to activity in the 
corticolimbic circuitry, such as the prefrontal cortex, amygdala, 
striatum, insular cortex and thalamus (17, 18). Insomnia 
symptoms are also associated with posterior DMN (19), fatigue is 
associated with the medioventral occipital cortex and precentral 
gyrus (20), while pain is linked to activity in the left putamen, left 
frontal gyrus and right insula (20).

One hypothesis is that dysfunctions of sensitivity, awareness, 
and attention play important roles in the somatic symptoms of 
depression (21). Negative internal bodily stimuli can amplify 
the perceived intensity of pain and other somatic sensations and 
have been related to the anterior cingulate cortex and prefrontal 
cortex (22). In summary, we found that brain abnormalities in 
depressed patients with somatic symptoms were not exactly the 
same as those in NSD patients. In addition, patients with somatic 
symptoms show that brain region abnormalities were localized in 
the limbic-cortical systems.

Although the above studies have revealed that regional 
and inter-regional abnormalities exist in certain brain areas of 
depressed patients during the resting-state, they failed to assess 
the alterations in both regional spontaneous neuronal activity 
and the corresponding brain circuits during rest. In other words, 
one brain region may exhibit abnormal functionality from its 
connectivity with other regions but may not necessarily be 
abnormal itself. Similarly, abnormal regional activity may not 
imply abnormal connectivity between it and other regions. In 
addition, less attention has been given to SD patients with respect 
to fMRI. Therefore, it is of interest and meaningful to explore 
the underlying abnormal regional activity and its corresponding 
brain circuits in SD patients.

It was reported by Zang et al. (23) that ALFF can be used 
to examine regional brain activities in rest-state fMRI, since 
ALFF is strongly correlated to the BOLD signal time courses 
across different regions (24, 25). Since then, it has been found 
that MDD patients have altered ALFF in a number of emotional 
or cognitive-related brain areas, including parts of the frontal, 
temporal, parietal, and occipital cortices and the cerebellum 
(3, 26–28). As an additional advantage, ALFF can be used to 
investigate the neuronal activity of the entire brain (25) and 
select the “seed” voxels for further functional connectivity (FC) 
analysis, which avoids potential bias (29). FC analyses, which 
are based on the temporal correlations between spatially remote 
neurophysiological events, are a method used for measuring 
the correlation coefficients of all brain areas with a single pre-
defined region. Recent studies of brain networks using an FC 
analysis have provided novel insights into how distributed brain 
regions are functionally integrated in MDD patients (30). Seed-
based FC analyses could be a promising approach to observe 
the connectivity between abnormal regions and other regions 
in SD patients.

The ALFF and FC analyses have been combined and employed 
with regards to several brain disorders to provide additional 
important information and understanding of the considered  
diseases, such as migraines (31), heroin addiction (32),  
unmedi cated depression (33), and NSD (12). However, to the best 
of our knowledge, less attention has been given to the application 
of this method to first-episode SD patients. On the other hand, 
Fan et al. (34) demonstrated that functional connectivity during 
the resting-state was modulated by autonomic arousal. In 
addition, Di X et al. (35) found that within-network connections 
were correlated to the local fluctuation amplitudes, and the 
dynamic network-functional connectivity properties were 
associated with the intrinsic activities of the brain networks (36).  
Thus, we hypothesize that the difference in the intrinsic activities 
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of limbic-cortical regions may be associated with the functional 
connectivity in the brain circuits of SD patients.

In this study, we first used ALFF measurements to investigate 
the regional spontaneous neuronal activity in SD and NSD 
patients, and then identified which brain regions from the 
different ALFFs were regions of interest (ROIs). After that, 
we applied a seed-based FC analysis to elucidate brain circuit 
spontaneous neuronal activity properties. We hypothesize 
that abnormal ALFF and FCs would be discovered in certain 
emotional and cognitive-related brain areas in SD patients. 
Meanwhile, we also hypothesize that alterations in brain function 
would be associated with the severity of SD.

METHODS

Subjects
From May 2011 to August 2015, we recruited 60 patients who 
underwent the first episode of depression from the Department 
of Psychiatry of the Affiliated Brain Hospital of Nanjing Medical 
University. Meanwhile, 27 healthy controls (HCs) who were 
matched in age, education, and gender (mean age ± standard 
deviation = 32.22 ± 7.75 years old, mean education ± standard 
deviation = 14.92 ± 1.77 years, 13 males) were recruited. The 
inclusion criteria included being right-handed, aged 20-45, and 
Chinese Han. The Mini International Neuropsychiatric Interview 
(MINI) (37) was used to confirm MDD diagnoses by two 
qualified psychiatrists (Dr Yu Chen and Dr JiaBo Shi) according 
to DSM-IV-TR criteria (1). Before the MRI scan, all patients 
were required to have at least a 2-week medication washout 
period. The total score of the 17-item Hamilton Rating Scale for 
Depression (HRSD) (38) had to be ≥ 17 on the scanning day. 
All patients had no somatic disease, head injury history, or any 
other additional psychiatric disease. Each HC was filtered using 
the non-patient version of the Structured Clinical Interview from 
the DSM-IV-TR, and none had any medical, neurological, or 
psychiatric illness, or had a first-degree-relative family history of 
major psychiatric or other neurological illness.

The patients were divided into SD and NSD groups in 
accordance with the criteria described by Silverstein (2). The SD 
patients conformed to at least three of the following symptoms: 
regular severe headaches, previous or current trouble breathing 
for no apparent reason, frequent staying asleep without waking 
up or trouble falling asleep at night, continual unexplained 
fatigue, and a poor body image/preference for thinness and/
or eating disorders (2). The patients were aged from 20 to 45 
years old (mean age ± standard deviation = 33.08 ± 8.92 years 
old, mean education ± standard deviation = 13.6 ± 3.3 years, 
19 males). The NSD patients were defined as MDD but were 
unaccompanied by sufficient somatic symptoms. These patients 
were aged from 20 to 45 years old (mean age ± standard 
deviation  = 33.1 ± 8.4 years old, mean education ± standard 
deviation = 14.8 ± 3.3 years, 11 males).

This study was approved by the Research Ethics Review Board 
of the Affiliated Brain Hospital of Nanjing Medical University. 
Signed informed consent was obtained after a complete description 
of the study was given to all subjects.

MRI Scan Acquisitions
Imaging data were obtained with an 8-channel radio frequency 
coil on a 3-Tesla Siemens verio scanner at the Affiliated Brain 
Hospital of Nanjing Medical University on the recruitment day. 
The heads of all subjects were placed in a birdcage coil and fit 
with foam padding to reduce head motion. Participants were 
required to remain motionless and relaxed and to keep their eyes 
closed. The parameters for T1 anatomic axial imaging were as 
follows: repetition time (TR) = 1900 ms, echo time (TE) = 2.48 ms,  
flip angle (FA) = 9°, number of slices = 176, slice thickness = 1 mm, 
in plane voxel resolution = 1 mm × 1 mm, and field of view 
(FOV) = 25 × 25 cm2. Resting-state fMRI data were obtained 
through the use of an echo-planar imaging (EPI) sequence. The 
parameters were as follows: TE = 40 ms, TR = 3000 ms, FA = 
90°, slice thickness = 4 mm, slice gap = 4 mm, number of slices = 
32, FOV  = 24 × 24 cm2, matrix size = 64 × 64, in plane voxel 
resolution = 3.75 mm × 3.75 mm, and 133 volumes.

Data Pre-Processing
The data processing assistant for resting-state fMRI (DPARSF) 
was used to perform the standard pre-processing steps (39). 
The first 6 functional volumes were discarded to allow the 
participants to get used to the scanner noise and account 
for T1 saturation effects. Then, slice timing, head-motion 
correction, and spatial normalization to that of the Montreal 
Neurological Institute (MNI, resampled voxel size = 3 × 3 × 
3 mm3) were conducted. Participant head motion should 
be less than 2 mm translations in any axial direction and 2° 
in any angular dimension at most. An estimate of the head 
motion was calculated as the frame-wise displacement (FD) 
at each time point using 6 displacements from the rigid body 
motion correction procedure (40). There were no significant 
differences in the FD values among the three groups (Table 1). 
The structural  images were normalized to the structural 
(T1-weighted) MNI template. No participant was precluded 
for reasons of excessive head motion or bad normalization. 
The remaining data were smoothed using a 6 mm full-width at 
half maximum (FWHM) Gaussian kernel. Finally, a temporal 
filter (0.01~0.08 Hz) and linear detrend were used to reduce the 
high-frequency noise and low-frequency drift.

ALFF Analysis
The ALFF was calculated using the DPARSF software. The 
filtered time series was rendered into the frequency domain 
using a fast Fourier transform (FFT) for each voxel, except for the 
cerebellum, (taper percent = 0 and FFT length = shortest). The 
square root was calculated at each power spectrum frequency 
and the averaged square root at each voxel was acquired across 
0.01-0.08 Hz. This averaged square root was regarded as the 
ALFF value (23). For normalization purposes, the ALFF of each 
voxel, except the cerebellum, was divided within a brain mask 
using the mean ALFF value, which was acquired by undocking 
the tissues outside the brain using the MRIcro software (http://
www.psychology.nottingham.ac.uk/staff/cr1/mricro.html). This 
standardization procedure is consistent with that used in PET 
studies (41).
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Functional Connectivity Analysis
To prepare for the functional connectivity analysis, several 
sources of fake variances that included the parameters of 
head motion, averaged global BOLD signals and mean BOLD 
signals in the ventricular and white matter regions were 
removed. We examined the functional connectivity using 
a seed-based approach. To obtain the ROIs of the seeds, we 
defined the voxels that had peak regions with significant 
differences between the SD and NSD groups as the centres, and 
used each centre to draw a sphere with a 6-mm radius. Then, 
a correlation analysis was performed between the averaged 
time series of all voxels in the ROI and the time series of the 
removed cerebellum from the entire brain template based on 
the voxel-wise approach. The correlation coefficients were 
converted into z values using the Fisher’s transformation to 
improve the normality.

Statistical Analyses
A one-way analysis of variance (ANOVA) was used to compare 
the age, education and HRSD-17 scores, while chi-square tests 
were used for the gender of the SD, NSD and HC groups. The 
disease duration and the factors from the HRSD-17 were 
compared between the SD and NSD groups using two-sample 
t-tests (SPSS 19.0 software, SPSS Inc., Chicago, IL). The level of 
statistical significance was set at p < 0.05 (two-tailed).

To compare the ALFF or FC values among the three 
groups, a one-way ANOVA was applied to the resting-state 
fMRI data analysis toolkit (REST) software after checking the 
age, sex and years of education as covariates and correcting 
for multiple comparison. The following post hoc t-tests were 
performed to identify differences between each pair of groups 
(42). On one hand, to check for multiple comparisons in 
the statistical analysis of the ALFF values, we used the false 
discovery rate (FDR) correction to adjust the alpha level 
(p < 0.05 and cluster size of at least 20 voxels, FDR corrected). 
On the other hand, to check for multiple comparisons in the 
statistical FC values, we used the Gibbs random fields (GRF) 
correction to adjust the alpha level. The one-way ANOVA was 

applied to the 6-mm FWHM parameter, which was combined 
with the individual voxels p < 0.001 with a minimum cluster 
size of 33 voxels (p < 0.05, GRF corrected). Then, post hoc 
t-tests were performed using the parameters to determine 
the significance threshold, which was combined with the 
individual voxels given p < 0.001 and a minimum cluster 
size of 7 voxels (p < 0.05, GRF corrected). We acquired the 
parameters using a function of the REST software called 
the cluster threshold size estimator  plug-in (42). To use the 
parameters, the false probability rate of the corrected family-
wise was set at p < 0.05.

A Pearson correlation analysis was conducted to observe the 
possible clinical relevance between alterations in brain function 
and the severity of somatic symptoms. We used the same method 
as that for the seed-based FC to obtain the ROIs, which showed 
significant differences in the FC between the SD and NSD groups. 
Then, the mean ALFF values or mean z values of the ROIs were 
calculated for each group subject. Finally, Pearson correlation 
analyses were performed between the abnormal mean ALFF 
values or mean z values of the ROIs and the following symptom 
features: the HRSD total scores and three separate symptomatic 
factors, including anxiety, weight loss, and sleep disturbance. 
Bonferroni correction was performed to reduce the rate of false 
positives for multiple comparisons, where the threshold was set 
to alpha = 0.05/4.

RESULTS

Demographic Results
Clinical, demographic data and the frame-wise displacement of 
the participants are shown in Table 1. The distributions of gender, 
age, and education were matched among the three groups.

ALFF: Group Differences
There were widespread differences in the ALFF values between 
the SD, NSD and HC throughout the right inferior temporal 
gyrus, left hippocampus, right inferior frontal orbital gyrus and 

TABLE 1 | Participant demographic, clinical characteristics and Frame-wise displacement.

Variables SD (n = 35) NSD (N = 25) HC (n = 27) p value

Age (years) 33.1 ± 8.9 33.1 ± 8.4 32.3 ± 7.8 0.926a

Gender (male:female) 19:16 11:14 13:14 0.725b

Education (years) 13.6 ± 3.3 14.8 ± 3.0 14.7 ± 1.8 0.162a

Illness duration (months) 6.8 ± 4.2 8.4 ± 5.6 – 0.224c

HRSD score 26.2 ± 4.2 22.1 ± 4.4 2.0 ± 1.9 0.000a

Factors in HRSD
Anxiety 7.3 ± 2.4 5.1 ± 2.2 – 0.000c

Weight loss 0.9 ± 0.8 0.8 ± 0.9 – 0.498c

Cognitive disturbance 4.1 ± 1.8 3.7 ± 1.9 – 0.399c

Retardation 8.1 ± 1.9 8.0 ± 1.8 – 0.838c

Sleep disturbance 4.7 ± 1.6 4.4 ± 2.0 – 0.383c

FD 0.11 ± 0.04 0.11 ± 0.08 0.11 ± 0.05 0.893a

SD, somatic depression; NSD, non-somatic depression; HC, healthy control; HRSD, Hamilton rating scale for depression; FD, frame-wise displacement.
aThe p values were obtained with a one-way ANOVA.
bThe p values were obtained with chi-square test.
cThe p values were obtained with a two-sample t-test.
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left thalamus from the ANOVA analysis (p < 0.05, FDR corrected) 
(Table 2 and Figure 1).

ALFF: SD versus NSD Patients
Compared to the NSD patients, the SD patients showed a 
significant ALFF increase in the right inferior temporal gyrus 
and significant decreases in the left hippocampus, right inferior 
frontal orbital gyrus and left thalamus (p < 0.05, FDR corrected) 
(Table 2 and Figure 2).

ALFF: NSD Patients versus HC
Relative to the HC group, patients with NSD exhibited higher 
ALFF values in the left hippocampus, right inferior frontal orbital 
gyrus and left thalamus, and lower values in the right inferior 
temporal gyrus (p < 0.05, FDR corrected) (Table 2 and Figure 3).

ALFF: SD Patients versus HC
There were no significant differences in the ALFF between 
patients with SD and the HC group.

FC: Group Differences
No significant findings were found among the three groups 
when using the three ROIs, including the right inferior temporal  

FIGURE 1 | Brain regions showing differences in the amplitudes of low-frequency fluctuations among the three groups with age, sex and years of education as 
covariates. The colour bar signifies the F-value of the ANOVA analysis with p < 0.05 and corrected for multiple comparisons using FDR.

TABLE 2 | Brain areas with amplitudes of low-frequency fluctuation differences 
among all groups.

Brain regions MNI (x y z) Cluster 
size

F/t -value

Three group 
R Inferior temporal gyrus 39 0 –45 64 19.261a

L Hippocampus –27 –33 0 21 20.622a

R Inferior frontal orbital gyrus 45 36 –9 20 22.208a

L Thalamus –21 –24 6 31 28.208a

SD > NSD
R Inferior temporal gyrus 39 0 –45 64 5.606b

SD < NSD
L Hippocampus –21 –36 6 20 −4.852b

R Inferior frontal orbital 
region

45 39 –9 20 −5.765b

L Thalamus –21 –24 6 31 −6.709b

NSD > HC
L Hippocampus –27 –33 0 21 7.259b

R Inferior frontal orbital gyrus 45 36 –9 20 4.864b

L Thalamus –21 –24 6 31 6.069b

NSD < HC
R Inferior temporal gyrus 39 3 45 64 −5.448b

ALFF, amplitude of low-frequency fluctuation; MNI, Montreal Neurological Institute;  
x, y, z, are the coordinates of the primary peak locations in the MNI space; SD, somatic 
depression; NSD, non-somatic depression; HC, healthy control; F, statistical value 
of the peak voxel showing the significant ALFF differences among all the groups; 
t, statistical value of the peak voxel showing significant ALFF differences between the 
SD and NSD, or NSD and HC (p < 0.05, corrected for FDR correction).; L, left; R, right.
aThe F statistical value.
bThe t statistical value.
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FIGURE 2 | Brain regions showing differences in the amplitudes of low-frequency fluctuations between the SD patients and NSD patients. The colour bar signifies 
the t-value of the independent t-tests between the two groups with p < 0.05 and corrected for multiple comparisons using FDR.

FIGURE 3 | Brain regions showing differences in the amplitudes of low-frequency fluctuations between SD patients and the HC group. The colour bar signifies the 
t-value of the independent t-tests between the two groups with p < 0.05 and corrected for multiple comparisons using FDR.
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gyrus, left hippocampus and left thalamus, as the seeds. Figure 4 
shows the one-way ANOVA analysis of the FC values among the 
three groups. Significant group differences were detected in the 
right inferior frontal orbital gyrus with the left middle temporal 
gyrus, and the right inferior frontal orbital gyrus with the left 

inferior parietal cortex (p < 0.05, GRF corrected) (Table 3 and 
Figure 4).

FC: SD versus NSD Patients
Compared to the NSD patients, SD patients showed a significant 
decrease in the FC value in the right inferior frontal orbital gyrus 
with the left inferior parietal cortex (p < 0.05, GRF corrected) 
(Table 3 and Figure 5).

FC: SD Patients versus HC
With regards to to the HC group, SD patients exhibited lower 
FC values in the right inferior frontal orbital gyrus with the left 
middle temporal gyrus, and the right inferior frontal orbital gyrus 
with the left inferior parietal cortex (p < 0.05, GRF corrected) 
(Table 3 and Figure 6).

FC: NSD Patients versus HC
There were no significant differences in the FC values between 
NSD patients and the HC group.

Correlations between ALFF or FC 
and the Somatic Symptoms Features
In SD patients, the mean ALFF value for the right inferior frontal 
orbital gyrus was negatively correlated with the severity of 
anxiety factor scores (r = –0.431, p = 0.010, corrected, Figure 7). 

FIGURE 4 | Brain regions showing differences in the functional connectivities among the three groups with age, sex and years of education as covariates. The 
colour bar signifies the F-value of the ANOVA analysis with p < 0.05 and corrected for multiple comparisons using GRF.

TABLE 3 | Brain areas with significantly different functional connectivity for 
considered the right inferior frontal orbital gyrus as seed region towards voxels 
at whole brain among in the SD, NSD and HC groups.

Brain regions MNI (x y z) Cluster 
size

F/t -value

Three groups 
L Middle temporal gyrus −48 −54 0 80 4.697a

L Inferior parietal cortex −51 −36 57 85 4.641a

SD < NSD
L Inferior parietal cortex −51 −36 57 20 −4.852b

SD < HC
L Middle temporal gyrus −48 −54 0 60 −4.807b

L Inferior parietal cortex −42 −42 57 68 −4.924b

SD, somatic depression; NSD, non-somatic depression; HC, healthy control; MNI, 
Montreal Neurological Institute; x, y, z, are the coordinates of the primary peak locations  
in the MNI space; F, statistical value of the peak voxel showing significantly 
differences in the functional connectivity with the right inferior frontal orbital gyrus seed 
among all the groups; t, statistical value of the peak voxel showing different  
functional connectivities with the right inferior frontal orbital gyrus seed in the SD 
compared to the NSD, or NSD and HC (p < 0.05, corrected for GRF correction); L, left; 
R, right.
aThe F statistical value.
bThe t statistical value.
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FIGURE 5 | Brain regions showing differences in the functional connectivities between the SD patients and NSD patients. The colour bar signifies the t-value of the 
independent t-tests between the two groups with p < 0.05 and corrected for multiple comparisons using GRF.

FIGURE 6 | Brain regions showing differences in the functional connectivities between the SD patients and the HC group. The colour bar signifies the t-value of the 
independent t-tests between the two groups with p < 0.05 and corrected for multiple comparisons using GRF.
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No other alterations in brain function demonstrated a significant 
correlation with the total HRSD scores and the three separate 
symptomatic factors scores.

DISCUSSION

The aim of this study was to examine the intrinsic activities 
and corresponding brain circuit alterations by comparing the 
whole-brain fMRI ALFF and the corresponding FC between 
MDD patients with and without somatic symptoms. Our 
analysis found that SD patients showed a significant increase in 
the ALFF for the right inferior temporal gyrus, and significant 
decreases in the left hippocampus, right inferior frontal 
orbital gyrus and left thalamus. There was also a significant 
decrease in the FC value between the right inferior frontal 
orbital gyrus and the left inferior parietal cortex. We found 
that areas with abnormal regional activity and the associated 
brain circuits were situated in the limbic-cortical systems, 
which were considered as important emotional or cognitive-
related brain regions in depressed patients during the resting 
state. This finding confirmed our hypothesis that abnormal 
regional activity affects the associated brain circuits in SD 
patients. Moreover, the mean ALFF value for the right inferior 
frontal orbital gyrus was associated with the severity of anxiety 
symptoms. These results suggest that the SD phenomenon may 
be rooted in psychosocial forces (6). This may be an important 
aspect of the underlying mechanisms for the pathogenesis of 
SD in Chinese patients and around the world.

The right inferior frontal orbital gyrus is the upper part of 
the limbic lobe and a region of the orbitofrontal cortex. Recent 
evidence has indicated that the inferior frontal orbital gyrus is 
associated with a variety of brain functions, including memory-
related emotions, self-awareness (43), cognitive regulation (44), 
memory, and reward (45). Yu et al. found that the orbitofrontal 
cortex is associated with interactions between insomnia and 
MDD and has an important role in the neuropathology of the 
comorbidity of insomnia and MDD (46). Our results were in line 
with these studies. Compared with NSD patients, we observed 
that the SD patients showed decreased ALFF values in the inferior 
frontal orbital gyrus, while the mean ALFF value of the right 
inferior frontal orbital gyrus was negatively correlated with the 
severity of anxiety symptoms.

Tozzi et al. found that the activation of the inferior 
frontal orbital gyrus was inversely correlated with the Beck’s 
depression inventory and HRSD total scores, which might 
be a relevant area for clinical symptoms of MDD (47). Yao 
et al. found that decreases in the regional homogeneity of 
the orbitofrontal cortex were related to cognitive deficits 
from depression (48). A previous study reported that the 
orbitofrontal cortex modulates the cognitive shift between 
internal and external environments and may affect anxiety 
through trait optimism (49).

Taken together with the above studies, the abnormal 
spontaneous neural activity in the inferior frontal orbital gyrus 
might lead to impaired mood regulation, insomnia, anxiety 
and lack of reward in SD patients, and exhibited a dissociation 
from the perceived effort required to obtain rewards (50). 

FIGURE 7 | Negative correlation between the amplitudes of the low-frequency fluctuations of the right inferior frontal orbital gyrus and the severity of anxiety factor 
scores in the SD group. The X axis shows the score of the anxiety factors of the HAMD-17, and the Y axis is the amplitude of the low-frequency fluctuations of the 
right inferior frontal orbital gyrus.
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This could explain why SD patients have negatively biased 
attention in somatic symptoms, and do poorly in shifting 
attentional focus away from physical discomfort information 
(50). Thus, we speculate that the ALFF abnormality in 
the inferior  frontal orbital gyrus may partially cause the 
pathogenesis of depression, anxiety and insomnia symptoms 
in SD patients.

In addition, the right inferior frontal orbital gyrus, right 
inferior temporal gyrus and left inferior parietal cortex 
are core components of the DMN (30). The DMN has been 
demonstrated to play a key role in the self-referential activities 
of MDD patients (51). Several studies have addressed the 
dissociation pattern of the DMN in MDDs (52, 53). In a study 
of a first-episode, drug-naive, somatization disorder, Su et al. 
found the right inferior temporal gyrus was associated with the 
severity of anxiety symptoms (54). In this study, we observed 
lower ALFF values in the right inferior frontal orbital gyrus 
and higher ALFF values in the right inferior temporal gyrus. 
We also observed increased FCs between the right inferior 
frontal orbital gyrus and the left inferior parietal cortex. The 
abnormal ALFF values in the right inferior frontal orbital 
gyrus were associated with the severity of anxiety symptoms 
in SD patients.

Our findings are in line with the above studies and indicate 
that abnormal activities in the inferior frontal orbital gyrus and 
right inferior temporal gyrus may reflect depressive moods, 
anxiety and insomnia symptoms in SD patients. Therefore, these 
abnormalities were used to determine the depressed state, which 
modulates the functional connectivity in DMN circuits (14, 51). 
These may be important pathomechanisms for dysfunctions 
in DMN circuits and could serve as potential indicators to 
quantitatively evaluate the severity of depression. Further studies 
are needed to verify this speculation.

Compared with NSD patients, SD patients showed lower 
ALFF values in the left hippocampus and left thalamus. The 
thalamus and hippocampus are important parts of limbic-
cortical systems (55). The hippocampus is known to play 
an important role in memory consolidation and for the 
modulation of emotions and mood (56). The thalamus has 
been shown to play a crucial role in the awareness, sensory, 
motor and cognitive functions through the connectivity 
between its sub-nuclei and cortical and subcortical regions 
(57). It was reported by Jia et al. (58) that there are reduced 
fibre projections to the orbitofrontal and thalamus in depressed 
patients, which may disrupt the affective and cognitive 
functions to confer a heightened vulnerability and suicidal 
behaviour. Our study is consistent with the results of previous 
studies and indicates that the abnormal ALFF in the left 
hippocampus and left thalamus impaired the limbic-cortical 
systems, which combined with active intrinsic compensatory 
processes are seen to cause different somatic symptoms (59). 
These abnormal results may be associated with emotional and 
cognitive deficits in SD.

Finally, several limitations in this study must be 
acknowledged. First, the relatively small sample sizes may limit 
the generalization of our results. Second, we cannot exclude 
the influence of brain activity from medicine, although there 

was a minimum 2-week medication washout prior to the 
MRI scans (60). If all participant were required to be in an 
unmedicated state, there would be substantial practical and 
ethical hurdles. Third, although we instructed subjects to try 
and not think and to keep their eyes closed, the subjects still 
had thoughts or fell asleep during imaging. Finally, the sample 
sizes of the three groups were not equal. Although our data 
obey the normal distribution and homogeneity of variance, 
this fact may affect the effectiveness of the t-test statistics. In 
the future, the sample sizes should be increased.

In conclusion, we found that applying ALFF and FC analyses 
provide the impairment activity and connectivity in limbic-
cortical systems and DMN circuits in SD patients. Our results 
suggest that abnormal regional alterations in the spontaneous 
neuronal activity may reflect a depressed state and should 
therefore be used as an index to modulate the functional 
connectivity during rest in SD patients. These may be important 
aspects of the underlying mechanisms for pathogenesis of SD at 
the neural level.
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