2,596 research outputs found
Research on UBI auto insurance pricing model based on parameter adaptive SAPSO optimal fuzzy controller
Aiming at the problem of “dynamic” accurate determination of rates in UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On the basis of the SASPO algorithm, the movement direction of the particles can be mutated and the direction can be dynamically controlled, the inertia weight value is given by the distance between the particle and the global optimal particle, and the learning factor is calculated according to the change of the fitness value, which realizes the parameter in the running process. Effective self-adjustment. A five-dimensional fuzzy controller is constructed by selecting the monthly driving mileage, the number of violations, and the driving time at night in the UBI auto insurance data. The weights are used to form fuzzy rules, and a variety of algorithms are used to optimize the membership function and fuzzy rules and compare them. The research results show that, compared with other algorithms, the parameter adaptive SAPAO algorithm can calculate more reasonable, accurate and high-quality fuzzy rules and membership functions when processing UBI auto insurance data. The accuracy and robustness of UBI auto insurance rate determination can realize dynamic and accurate determination of UBI auto insurance rates
Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy
Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence
of coupled antiferromagnetic/ferroelectric and ferromagnetic orders in
multiferroic TbMnO3 films through their time domain signatures. Our
observations are explained by a theoretical model describing the coupling
between reservoirs with different magnetic properties. These results can guide
researchers in creating new kinds of multiferroic materials that combine
coupled ferromagnetic, antiferromagnetic and ferroelectric properties in one
compound.Comment: Accepted by Appl. Phys. let
Polaronic transport induced by competing interfacial magnetic order in a LaCaMnO/BiFeO heterostructure
Using ultrafast optical spectroscopy, we show that polaronic behavior
associated with interfacial antiferromagnetic order is likely the origin of
tunable magnetotransport upon switching the ferroelectric polarity in a
LaCaMnO/BiFeO (LCMO/BFO) heterostructure. This is
revealed through the difference in dynamic spectral weight transfer between
LCMO and LCMO/BFO at low temperatures, which indicates that transport in
LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases
in relatively high magnetic fields due to the increased spin alignment, while
no discernible change is found in the LCMO film at low temperatures. These
results thus shed new light on the intrinsic mechanisms governing
magnetoelectric coupling in this heterostructure, potentially offering a new
route to enhancing multiferroic functionality
Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window
Electrochromic devices (ECDs) have emerged as a unique class of optoelectronic devices for the development of smart windows. However, current ECDs typically suffer from low coloration efficiency (CE) and high energy consumption, which have thus hindered their practical applications, especially as components in solar-powered EC windows. Here, the high-performance ECDs with a fully crystalline viologen-immobilized 2D polymer (V2DP) thin film as the color-switching layer is demonstrated. The high density of vertically oriented pore channels (pore size approximate to 4.5 nm; pore density approximate to 5.8 x 1016 m-2) in the synthetic V2DP film enables high utilization of redox-active viologen moieties and benefits for Li+ ion diffusion/transport. As a result, the as-fabricated ECDs achieve a rapid switching speed (coloration, 2.8 s; bleaching, 1.2 s), and a high CE (989 cm2 C-1, and low energy consumption (21.1 µW cm-2). Moreover, it is managed to fabricate transmission-tunable, self-sustainable EC window prototypes by vertically integrating the V2DP ECDs with transparent solar cells. This work sheds light on designing electroactive 2D polymers with molecular precision for optoelectronics and paves a practical route toward developing self-powered EC windows to offset the electricity consumption of buildings
Electric Field Effect in Multilayer Cr2Ge2Te6: a Ferromagnetic Two-Dimensional Material
The emergence of two-dimensional (2D) materials has attracted a great deal of
attention due to their fascinating physical properties and potential
applications for future nanoelectronic devices. Since the first isolation of
graphene, a Dirac material, a large family of new functional 2D materials have
been discovered and characterized, including insulating 2D boron nitride,
semiconducting 2D transition metal dichalcogenides and black phosphorus, and
superconducting 2D bismuth strontium calcium copper oxide, molybdenum
disulphide and niobium selenide, etc. Here, we report the identification of
ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few
nanometers, which provides a very important piece to the van der Waals
structures consisting of various 2D materials. We further demonstrate the giant
modulation of the channel resistance of 2D CGT devices via electric field
effect. Our results illustrate the gate voltage tunability of 2D CGT and the
potential of CGT, a ferromagnetic 2D material, as a new functional quantum
material for applications in future nanoelectronics and spintronics.Comment: To appear in 2D Material
Quantum size effects on the perpendicular upper critical field in ultra-thin lead films
We report the thickness-dependent (in terms of atomic layers) oscillation
behavior of the perpendicular upper critical field in the
ultra-thin lead films at the reduced temperature (). Distinct
oscillations of the normal-state resistivity as a function of film thickness
have also been observed. Compared with the oscillation, the
shows a considerable large oscillation amplitude and a phase shift. The
oscillatory mean free path caused by quantum size effect plays a role in
oscillation.Comment: 4 pages, 4 figure
- …