2,596 research outputs found

    Research on UBI auto insurance pricing model based on parameter adaptive SAPSO optimal fuzzy controller

    Get PDF
    Aiming at the problem of “dynamic” accurate determination of rates in UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On the basis of the SASPO algorithm, the movement direction of the particles can be mutated and the direction can be dynamically controlled, the inertia weight value is given by the distance between the particle and the global optimal particle, and the learning factor is calculated according to the change of the fitness value, which realizes the parameter in the running process. Effective self-adjustment. A five-dimensional fuzzy controller is constructed by selecting the monthly driving mileage, the number of violations, and the driving time at night in the UBI auto insurance data. The weights are used to form fuzzy rules, and a variety of algorithms are used to optimize the membership function and fuzzy rules and compare them. The research results show that, compared with other algorithms, the parameter adaptive SAPAO algorithm can calculate more reasonable, accurate and high-quality fuzzy rules and membership functions when processing UBI auto insurance data. The accuracy and robustness of UBI auto insurance rate determination can realize dynamic and accurate determination of UBI auto insurance rates

    Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy

    Full text link
    Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic/ferroelectric and ferromagnetic orders in multiferroic TbMnO3 films through their time domain signatures. Our observations are explained by a theoretical model describing the coupling between reservoirs with different magnetic properties. These results can guide researchers in creating new kinds of multiferroic materials that combine coupled ferromagnetic, antiferromagnetic and ferroelectric properties in one compound.Comment: Accepted by Appl. Phys. let

    Polaronic transport induced by competing interfacial magnetic order in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} heterostructure

    Full text link
    Using ultrafast optical spectroscopy, we show that polaronic behavior associated with interfacial antiferromagnetic order is likely the origin of tunable magnetotransport upon switching the ferroelectric polarity in a La0.7_{0.7}Ca0.3_{0.3}MnO3_{3}/BiFeO3_{3} (LCMO/BFO) heterostructure. This is revealed through the difference in dynamic spectral weight transfer between LCMO and LCMO/BFO at low temperatures, which indicates that transport in LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases in relatively high magnetic fields due to the increased spin alignment, while no discernible change is found in the LCMO film at low temperatures. These results thus shed new light on the intrinsic mechanisms governing magnetoelectric coupling in this heterostructure, potentially offering a new route to enhancing multiferroic functionality

    Stratified Transformer for {3D} Point Cloud Segmentation

    Get PDF

    Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window

    Get PDF
    Electrochromic devices (ECDs) have emerged as a unique class of optoelectronic devices for the development of smart windows. However, current ECDs typically suffer from low coloration efficiency (CE) and high energy consumption, which have thus hindered their practical applications, especially as components in solar-powered EC windows. Here, the high-performance ECDs with a fully crystalline viologen-immobilized 2D polymer (V2DP) thin film as the color-switching layer is demonstrated. The high density of vertically oriented pore channels (pore size approximate to 4.5 nm; pore density approximate to 5.8 x 1016 m-2) in the synthetic V2DP film enables high utilization of redox-active viologen moieties and benefits for Li+ ion diffusion/transport. As a result, the as-fabricated ECDs achieve a rapid switching speed (coloration, 2.8 s; bleaching, 1.2 s), and a high CE (989 cm2 C-1, and low energy consumption (21.1 µW cm-2). Moreover, it is managed to fabricate transmission-tunable, self-sustainable EC window prototypes by vertically integrating the V2DP ECDs with transparent solar cells. This work sheds light on designing electroactive 2D polymers with molecular precision for optoelectronics and paves a practical route toward developing self-powered EC windows to offset the electricity consumption of buildings

    Electric Field Effect in Multilayer Cr2Ge2Te6: a Ferromagnetic Two-Dimensional Material

    Full text link
    The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material, a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.Comment: To appear in 2D Material

    Quantum size effects on the perpendicular upper critical field in ultra-thin lead films

    Full text link
    We report the thickness-dependent (in terms of atomic layers) oscillation behavior of the perpendicular upper critical field Hc2H_{c2\perp} in the ultra-thin lead films at the reduced temperature (t=T/Tct=T/T_c). Distinct oscillations of the normal-state resistivity as a function of film thickness have also been observed. Compared with the TcT_c oscillation, the Hc2H_{c2\perp} shows a considerable large oscillation amplitude and a π\pi phase shift. The oscillatory mean free path caused by quantum size effect plays a role in Hc2H_{c2\perp} oscillation.Comment: 4 pages, 4 figure
    corecore