2,687 research outputs found

    A robust computational algorithm for inverse photomask synthesis in optical projection lithography

    Get PDF
    Inverse lithography technology formulates the photomask synthesis as an inverse mathematical problem. To solve this, we propose a variational functional and develop a robust computational algorithm, where the proposed functional takes into account the process variations and incorporates several regularization terms that can control the mask complexity. We establish the existence of the minimizer of the functional, and in order to optimize it effectively, we adopt an alternating minimization procedure with Chambolle's fast duality projection algorithm. Experimental results show that our proposed algorithm is effective in synthesizing high quality photomasks as compared with existing methods.published_or_final_versio

    Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail

    Get PDF
    Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy1, 2, 3, 4. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field5, 6. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a period of 19?h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn6. This counters the view of reconnection as a transient method of internal plasma loss at Saturn5, 7. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies

    Optimal Virtual Power Plant Operational Regime under Reserve Uncertainty

    Get PDF
    Virtual power plant (VPP) has become an important resource for reserve provision owing to its fast-responding capability. In this paper, an optimal VPP operational regime considering reserve uncertainty is proposed, which includes a novel day-ahead offering strategy and a real-time dispatching model. At the day-ahead stage, the offering strategy gives the VPP’s price-dependent offers in the energy market under multiple uncertainties on market price, renewable generation, and calls of reserve deployment. A hybrid stochastic minimax regret (MMR) model is proposed to facilitate making offering decisions in the electricity market. At the real-time dispatching stage, generation scheduling can be realized based on the MMR criterion in an online fashion. To alleviate the intrinsic conservativeness of the dispatching model, a self-adaptive algorithm is also proposed to instantly modify the confidence bounds. The proposed regime is comprehensively tested through extensive case studies, which demonstrate the effectiveness of our method in obtaining operational decisions that are less conservative

    Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in DD-dimensions

    Full text link
    We present solutions of the Dirac equation with spin symmetry for vector and scalar modified P\"oschl-Teller potential within framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain are in terms of the Jacobi polynomials. It is found that there exist only positive-energy states for bound states under spin symmetry, and the energy levels increase with the dimension and the potential range parameter α\alpha.Comment: 9 pages and 1tabl

    A Mutually Beneficial Operation Framework for Virtual Power Plants and Electric Vehicle Charging Stations

    Get PDF
    10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 72071100); Young Elite Scientist Sponsorship Program by CSEE (Grant Number: CSEE-YESS-2020027); Shenzhen Basic Research Program (Grant Number: JCYJ20210324104410030)

    Molecular Evolution of the Rice Blast Resistance Gene Pi-ta in Invasive Weedy Rice in the USA

    Get PDF
    The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing

    A Hybrid Incentive Program for Managing Electric Vehicle Charging Flexibility

    Get PDF
    With the mass roll-out of electric vehicles (EVs) and rapid progress in battery technology, utilizing EV charging flexibility has become a promising solution for supporting economic and secured power system operations. This work proposes a novel hybrid incentive program, which encourages EV owners to sell their charging flexibility to a charging station (CS) and achieve a win-win situation for both EV owners and the CS. Unlike existing approaches, the proposed hybrid incentive program is simultaneously featured with simplicity, consistency, and controllability. To determine the incentive payment parameters, an optimal incentive price selection model is developed. In the solution methodology, we first linearize the original problem, then develop an adaptive ADMM algorithm to efficiently solve the formulated problem. Case studies confirm the superiority of the proposed hybrid incentive program over the state-of-the-arts, achieving 22.51% of EV owners’ cost reduction, 31.18% of energy market bill reduction, and 64.13% of potential charging flexibility utilization
    • …
    corecore