160 research outputs found

    Ideological and Political Construction Based on the “Scenario-Action” Teaching Mode in the Major of French Language: A Case Study of “French Reading” Course

    Get PDF
    This paper refers to the teaching design and practice in the field of Ideological and political construction of curriculum in French reading course, the authors will firstly analyse the background of our exploration of the new teaching and learning mode, and then, represent the main cores of this mode, in order to promote the construction of the ideological and political in curriculum of not only the French reading course, but all courses of the French language

    DDC-PIM: Efficient Algorithm/Architecture Co-design for Doubling Data Capacity of SRAM-based Processing-In-Memory

    Full text link
    Processing-in-memory (PIM), as a novel computing paradigm, provides significant performance benefits from the aspect of effective data movement reduction. SRAM-based PIM has been demonstrated as one of the most promising candidates due to its endurance and compatibility. However, the integration density of SRAM-based PIM is much lower than other non-volatile memory-based ones, due to its inherent 6T structure for storing a single bit. Within comparable area constraints, SRAM-based PIM exhibits notably lower capacity. Thus, aiming to unleash its capacity potential, we propose DDC-PIM, an efficient algorithm/architecture co-design methodology that effectively doubles the equivalent data capacity. At the algorithmic level, we propose a filter-wise complementary correlation (FCC) algorithm to obtain a bitwise complementary pair. At the architecture level, we exploit the intrinsic cross-coupled structure of 6T SRAM to store the bitwise complementary pair in their complementary states (Q/QQ/\overline{Q}), thereby maximizing the data capacity of each SRAM cell. The dual-broadcast input structure and reconfigurable unit support both depthwise and pointwise convolution, adhering to the requirements of various neural networks. Evaluation results show that DDC-PIM yields about 2.84×2.84\times speedup on MobileNetV2 and 2.69×2.69\times on EfficientNet-B0 with negligible accuracy loss compared with PIM baseline implementation. Compared with state-of-the-art SRAM-based PIM macros, DDC-PIM achieves up to 8.41×8.41\times and 2.75×2.75\times improvement in weight density and area efficiency, respectively.Comment: 14 pages, to be published in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD

    Effect of Forced-air Pre-cooling at Different Postharvest Time on Shelf Quality and Aroma Components of Honey Peach

    Get PDF
    To investigate the effects of forced-air pre-cooling at different postharvest intervals on the shelf quality of honey peaches under cold chain circulation conditions, a study was conducted using ‘Zaosheng’ honey peaches as the experimental material. The experiment comprised of two groups: One group of honey peaches underwent forced-air pre-cooling 3 hours after harvest, while the other group underwent pre-cooling 6 hours after harvest. Following pre-cooling, the honey peaches were transported at a low temperature 5 ℃ for 12 hours, followed by an additional 12 hours of low-temperature delivery. Subsequently, the honey peaches were stored on simulated shelves at 25 ℃ for 5 days. The quality changes of honey peaches during shelf life were observed and sensory evaluation was carried out. The weight loss rate, decay rate, color difference, hardness, brittleness, soluble solid, titratable acid, VC, total phenol content and aroma components of honey peaches were measured and analyzed. The results indicated that the effect of pre-cooling at 6 hours after harvest on the shelf quality of honey peaches was found to be insignificant. Conversely, pre-cooling at 3 hours after harvest demonstrated significant benefits in terms of maintaining higher appearance quality and sensory scores of honey peaches. It also notably reduced the decay rate, inhibited the decline in L* value and the increase in a* value (P<0.05), and preserved higher levels of soluble solid, titratable acid, VC, and total phenol content. Furthermore, it hindered the decrease of fragrance aroma components and the increase of fragrance components of flowers and fruits. Thereby delaying the post-ripening and aging of honey peaches. In conclusion, for optimal honey peaches production, it is recommended to implement prompt pre-cooling within 3 hours after harvest. This practice can enhance the quality of honey peaches during their shelf life and extend their overall longevity

    Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data

    Get PDF
    While many countries employed digital contact tracing to contain the spread of SARS-CoV-2, the contribution of cospace-time interaction (i.e., individuals who shared the same space and time) to transmission and to super-spreading in the real world has seldom been systematically studied due to the lack of systematic sampling and testing of contacts. To address this issue, we utilized data from 2230 cases and 220,878 contacts with detailed epidemiological information during the Omicron outbreak in Beijing in 2022. We observed that contact number per day of tracing for individuals in dwelling, workplace, cospace-time interactions, and community settings could be described by gamma distribution with distinct parameters. Our findings revealed that 38% of traced transmissions occurred through cospace-time interactions whilst control measures were in place. However, using a mathematical model to incorporate contacts in different locations, we found that without control measures, cospace-time interactions contributed to only 11% (95%CI: 10%–12%) of transmissions and the super-spreading risk for this setting was 4% (95%CI: 3%–5%), both the lowest among all settings studied. These results suggest that public health measures should be optimized to achieve a balance between the benefits of digital contact tracing for cospace-time interactions and the challenges posed by contact tracing within the same setting

    Potential Diagnostic Applications of Multi-Delay Arterial Spin Labeling in Early Alzheimer’s Disease: The Chinese Imaging, Biomarkers, and Lifestyle Study

    Get PDF
    Background: Cerebral blood flow (CBF) alterations are involved in the onset and progression of Alzheimer’s disease (AD) and can be a potential biomarker. However, CBF measured by single-delay arterial spin labeling (ASL) for discrimination of mild cognitive impairment (MCI, an early stage of AD) was lack of accuracy. Multi-delay ASL can not only provide CBF quantification but also provide arterial transit time (ATT). Unfortunately, the technique was scarcely applied to the diagnosis of AD. Here, we detected the utility of ASL with 1-delay and 7-delay in ten regions of interest (ROIs) to identify MCI and AD. Materials and Methods: Pseudocontinuous ASL (pCASL) MRI was acquired on a 3T GE scanner in adults from the Chinese Imaging, Biomarkers, and Lifestyle (CIBL) Study of AD cohort, including 26 normal cognition (NC), 37 MCI, and 39 AD. Receiver operating characteristic (ROC) analyses with 1-delay and 7-delay ASL were performed for the identification of MCI and AD. The DeLong test was used to compare ROC curves. Results: For CBF of 1-delay or 7-delay the AUCs showed moderate-high performance for the AD/NC and AD/MCI comparisons (AUC = 0.83∼0.96) (p 0.05). Conclusion: The combination of CBF and ATT with 7-delay ASL showed higher performance for identification of MCI than CBF of 1-delay, when adding to sex, age, APOE ε4 carrier status, and education years, the diagnostic performance was further increased, presenting a potential imaging biomarker in early AD

    Multi-Level Variational Spectroscopy using a Programmable Quantum Simulator

    Full text link
    Energy spectroscopy is a powerful tool with diverse applications across various disciplines. The advent of programmable digital quantum simulators opens new possibilities for conducting spectroscopy on various models using a single device. Variational quantum-classical algorithms have emerged as a promising approach for achieving such tasks on near-term quantum simulators, despite facing significant quantum and classical resource overheads. Here, we experimentally demonstrate multi-level variational spectroscopy for fundamental many-body Hamiltonians using a superconducting programmable digital quantum simulator. By exploiting symmetries, we effectively reduce circuit depth and optimization parameters allowing us to go beyond the ground state. Combined with the subspace search method, we achieve full spectroscopy for a 4-qubit Heisenberg spin chain, yielding an average deviation of 0.13 between experimental and theoretical energies, assuming unity coupling strength. Our method, when extended to 8-qubit Heisenberg and transverse-field Ising Hamiltonians, successfully determines the three lowest energy levels. In achieving the above, we introduce a circuit-agnostic waveform compilation method that enhances the robustness of our simulator against signal crosstalk. Our study highlights symmetry-assisted resource efficiency in variational quantum algorithms and lays the foundation for practical spectroscopy on near-term quantum simulators, with potential applications in quantum chemistry and condensed matter physics

    Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results

    Full text link
    Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, and the generalizability of algorithms across different imaging centers remains unsolved, limiting real-world clinical applicability. The multi-center FeTA Challenge 2022 focuses on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two imaging centers as well as two additional unseen centers. The data from different centers varied in many aspects, including scanners used, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated in the challenge, and 17 algorithms were evaluated. Here, a detailed overview and analysis of the challenge results are provided, focusing on the generalizability of the submissions. Both in- and out of domain, the white matter and ventricles were segmented with the highest accuracy, while the most challenging structure remains the cerebral cortex due to anatomical complexity. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms. The resulting new methods contribute to improving the analysis of brain development in utero.Comment: Results from FeTA Challenge 2022, held at MICCAI; Manuscript submitted. Supplementary Info (including submission methods descriptions) available here: https://zenodo.org/records/1062864

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore