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Background: Cerebral blood flow (CBF) alterations are involved in the onset and
progression of Alzheimer’s disease (AD) and can be a potential biomarker. However, CBF
measured by single-delay arterial spin labeling (ASL) for discrimination of mild cognitive
impairment (MCI, an early stage of AD) was lack of accuracy. Multi-delay ASL can not
only provide CBF quantification but also provide arterial transit time (ATT). Unfortunately,
the technique was scarcely applied to the diagnosis of AD. Here, we detected the utility
of ASL with 1-delay and 7-delay in ten regions of interest (ROIs) to identify MCI and AD.

Materials and Methods: Pseudocontinuous ASL (pCASL) MRI was acquired on a
3T GE scanner in adults from the Chinese Imaging, Biomarkers, and Lifestyle (CIBL)
Study of AD cohort, including 26 normal cognition (NC), 37 MCI, and 39 AD. Receiver
operating characteristic (ROC) analyses with 1-delay and 7-delay ASL were performed
for the identification of MCI and AD. The DeLong test was used to compare ROC curves.

Results: For CBF of 1-delay or 7-delay the AUCs showed moderate-high performance
for the AD/NC and AD/MCI comparisons (AUC = 0.83∼0.96) (p < 0.001). CBF of
1-delay performed poorly in MCI/NC comparison (AUC = 0.69) (p < 0.001), but CBF
of 7-delay fared well with an AUC of 0.79 (p < 0.001). The combination of CBF
and ATT of 7-delay showed higher performance for AD/NC, AD/MCI, and MCI/NC
comparisons with AUCs of 0.96, 0.89, and 0.89, respectively (p < 0.001). Furthermore,
combination of CBF, ATT, sex, age, APOE ε4, and education improved further the
accuracy (p < 0.001). In subgroups analyses, there were no significant differences in
CBF of 7-delay ASL for identification of AD or MCI between age subgroups (p > 0.05).

Frontiers in Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 934471

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.934471
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.934471
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.934471&domain=pdf&date_stamp=2022-07-22
https://www.frontiersin.org/articles/10.3389/fnins.2022.934471/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-934471 July 14, 2022 Time: 17:31 # 2

Sun et al. Diagnostic Applications of ASL in AD

Conclusion: The combination of CBF and ATT with 7-delay ASL showed higher
performance for identification of MCI than CBF of 1-delay, when adding to sex, age,
APOE ε4 carrier status, and education years, the diagnostic performance was further
increased, presenting a potential imaging biomarker in early AD.

Keywords: Alzheimer’s disease, mild cognitive impairment, diagnosis, multi-delay arterial spin labeling, cerebral
blood flow, arterial transit time

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative
disorder and is neuropathologically hallmarked by extracellular
β-amyloid (Aβ) plaques and by intracellular neurofibrillary
tangles consisting of hyperphosphorylated tau protein, which
starts 10–20 years before the onset of clinical symptoms
(Frisoni et al., 2011; Dubois et al., 2016; Jack et al., 2018).
Specific biomarkers of AD, Aβ, and Tau could be detected on
positron emission tomography (PET) or in cerebrospinal fluid
(CSF), which are expensive, invasive, and limiting widespread
application clinically (Verberk et al., 2018). For this reason,
studies have increasingly focused on affordable and non-invasive
methods for the detection of AD at an earlier stage [such
as mild cognitive impairment (MCI) and predementia phase
of AD] to delay and prevent the progression of the disease
(Alzheimer’s Association, 2018; Thomas et al., 2021). Cerebral
blood flow (CBF) changes are part of neurovascular unit
impairment that is considered as an essential role in AD
pathogenesis (Bell and Zlokovic, 2009; Zlokovic, 2011). The two-
hit vascular hypothesis of AD states that cerebrovascular damage
(“hit one”), including blood-brain barrier (BBB) breakdown and
CBF reductions, contributes to the accumulation of neurotoxic
molecules and hypoperfusion that can directly initiate neuronal
injury; subsequently, there is Aβ deposition (“hit two”) leading
to the onset and progression of AD dementia (Nelson et al.,
2016; Kisler et al., 2017). CBF has gained attention, which is
measured by arterial spin labeling (ASL) MRI, and ASL is a non-
invasive technique using magnetically labeled arterial water as an
endogenous tracer (Sierra-Marcos, 2017; Zhang et al., 2017).

Using ASL, several studies have supported the pattern of
spread of hypoperfusion in AD starting from the precuneus,
spreading to the rest of the parietal cortex and the cingulate gyrus,
then the frontal and temporal lobes and eventually the occipital
cortex (Dai et al., 2009; Binnewijzend et al., 2013; Wierenga
et al., 2014; Xekardaki et al., 2015; Love and Miners, 2016; Duan
et al., 2021). In cross-sectional studies, positive correlations have
been found between general cognition and cortical CBF in the
precuneus and posterior cingulate, parietal, frontal, temporal,
and occipital lobes (Binnewijzend et al., 2013; Leeuwis et al.,
2017; Duan et al., 2020). Decreased CBF of all of the above-
mentioned regions and entorhinal cortex has also been reported
to be a useful predictor of future cognitive decline in longitudinal
studies (De Vis et al., 2018; Sanchez et al., 2020; Bangen et al.,
2021; Duan et al., 2021). Moreover, areas of hypoperfusion
measured with ASL have a significant agreement with areas
of hypometabolism measured by 18F-fluorodeoxyglucose PET
(18F-FDG PET) in bilateral parietotemporal cortex, precuneus,

and posterior cingulate cortex in patients with AD and MCI
compared with healthy control participants (Riederer et al., 2018;
Dolui et al., 2020); and studies have shown that these imaging
modalities had similar associations with amyloid deposition in
regions of frontal, parietal, and temporal cortex performed with
voxel-wise regression based on cross-sectional analyses (McDade
et al., 2014; Yan et al., 2018). Although these studies indicate that
ASL-MRI CBF may be a valuable biomarker for AD, only a few
studies explored the diagnostic performance for discrimination
of MCI stage, which did not show high sensitivity and specificity
(Binnewijzend et al., 2013; Xekardaki et al., 2015; Dolui et al.,
2020).

Notably, ASL studies in AD to date have mostly been
performed using a single post-labeling delay (PLD), the time
between labeling and acquisition of the image for evaluating CBF.
The main limitation of single-delay ASL is that any variation
in arterial transit time (ATT) is ignored. ATT represents the
duration for labeled blood to travel from the labeling region to
the point of delivery to the brain tissue, which varies widely with
vascular pathology and normal aging and can have a significant
effect on quantifying CBF (Liu et al., 2012; Wang et al., 2013).
Multi-delay ASL, with multiple PLDs, can not only improve the
accuracy of CBF quantification by calculating mean values of CBF
at each PLD corrected by ATT but also enable the calculation
of ATT itself (Yoshiura et al., 2009; Wang et al., 2013). Little is
known about how CBF and ATT change with multi-delay ASL in
AD and whether the multi-delay is better than single-delay ASL
for the identification of MCI.

Considering spiral readout and background suppression, 3D
fast-spin-echo pseudocontinuous ASL (pCASL) is recommended
as the standard method for ASL image in the clinical setting
(Alsop et al., 2015), the current study investigated the changes in
CBF and ATT using 7-delay ASL and compared the diagnostic
value between 1-delay and 7-delay ASL in ten regions of
interest (ROIs): left and right regions of olfactory, posterior
cingulate, hippocampus, cuneus, and precuneus. Besides, we
also examined associations of cognitive performance with CBF
and ATT in ROIs.

MATERIALS AND METHODS

Participants
Subjects (n = 102) with ASL-MRI data were included in the
Chinese Imaging, Biomarkers, and Lifestyle (CIBL) Study of
AD cohort from April to October 2021. They were carefully
screened with a medical history, neuropsychological assessment,
and brain MRI. In this study, all participants from both
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genders with minimum primary school education, and were
clinically diagnosed with normal cognition (NC), MCI, and
AD. Patients with AD fulfilled the clinical criteria of probable
AD dementia defined by the National Institute on Aging
and Alzheimer’s Association (NIA-AA, 2011) (McKhann et al.,
2011). Patients with MCI had memory complaints and fulfilled
the criteria defined by NIA-AA (Albert et al., 2011). NC
subjects had no cognitive impairment and had Mini-Mental
State Examination (MMSE) scores of 25–30 and Montreal
Cognitive Assessment (MOCA) scores of 26–30. Subjects with the
evidence that might affect cognition, including cerebrovascular
diseases (e.g., stroke, multiple infarcts, and severe white matter
hyperintensity burden), other neurodegenerative diseases (e.g.,
frontotemporal dementia and dementia with Lewy bodies), and
other neurological diseases (e.g., head injury, hydrocephalus, and
encephalitis), were excluded. Subjects who suffered from organ
failure, cancer, severe depression, psychiatric illness, drugs or
alcohol abuse, and inability to perform MRI scan were also
excluded. The study was approved by the Institutional Review
Board of Beijing Tiantan Hospital of Capital Medical University
(KY2021-028-01). And the CIBL study had been registered
at http://www.chictr.org.cn/index.aspx (ChiCTR2100049131),
before enrolling participants. Written informed consent was
acquired from each participant or their guardians.

MRI Acquisition
Imaging data were acquired on a 3T MR scanner (SIGNA
Premier; GE HealthCare, Milwaukee, WI, United States) with
a 48-channel head coil. A high-resolution 3D T1-weighted
sequence was acquired with the following parameters: repetition
time (TR)/echo time (TE)/inversion time (TI) = 7.3/3.0/450 ms,
flip angle = 12◦, field of view (FOV) = 256 mm × 256 mm,
matrix size = 256 × 256, and slice thickness = 1.0 mm.
A high-resolution 3D T2-weighted FLAIR sequence was acquired
with the following parameters: TR/TE/TI = 5,000/106/1,515 ms,
FOV = 256 mm × 256 mm, matrix size = 256 × 256,
and slice thickness = 1.0 mm. ASL images were acquired
with a background-suppressed 3D stack-of-spirals fast-spin-
echo sequence preceded by a Hadamard-encoded pCASL
module. ASL imaging parameters with 1-delay were acquired
with the following parameters: TR/TE = 4,849/10.6 ms,
FOV = 220 mm × 220 mm, slice thickness = 4.0 mm, label
duration = 1,450 ms, and PLD = 2,025 ms, with these the proton
density image and the perfusion weighted image were generated;
and with 7-delay were acquired with the following parameters:
pCASL module modified to acquire an additional control-only
phase, TR/TE = 7,152/11.2 ms, FOV = 220 mm × 220 mm, slice
thickness = 3.0 mm, label durations = 220, 260, 300, 370, 480,
680, and 1,180 ms, and PLDs = 1,000, 1,220, 1,480, 1,780, 2,150,
2,620, and 3,320 ms.

Arterial Spin Labeling Processing
Arterial spin labeling data were quantitatively analyzed through
an automatic software “CereFlow” by AnImage (Beijing)
Technology Co., Ltd. with the following steps: (i) brain perfusion
images were calculated from the raw ASL data [CBF for 1-
delay ASL (Alsop et al., 2015) and CBF/ATT for 7-delay ASL

(van der Thiel et al., 2018)]; (ii) the M0 image and the T1-
weighted image were coregistered (rigid-body transformation
with mutual information as similarity metric optimized with
exhaustive method); (iii) T1-weighted image was normalized
(non-linear transformation, minimizing the bending energies of
the deformation fields, and the residual squared difference) onto
Montreal Neurological Institute (MNI) template (Binnewijzend
et al., 2013), and the M0 image and the perfusion images were
then transformed onto the same space as the template as well;
(iv) the gray matter regions were further mapped into different
cortical regions by masking with automated anatomical labeling
(AAL) atlas (Rolls et al., 2015); and (v) ten ROIs were chosen: left
and right of olfactory, posterior cingulate, hippocampus, cuneus,
and precuneus from the masked regions.

Total Gray Matter Volume
Total gray matter volume was acquired through the software
“Dr. Brain” by YIWEI medical technology Co., Ltd. (Wei
et al., 2020). Briefly, (i) the T1-weighted image was segmented
into gray matter, white matter, and CSF; (ii) a template is
created using the Dartel algorithm from the subjects’ tissue
probability maps obtained at the previous step; (iii) iterate the
created template, register the subject’s organization probability
map with the previous template in each iteration, average
the registered organization probability map again to obtain a
new template, and finally register the probability map to MNI
space; and (iv) total gray matter was then computed based on
neuromorphometrics atlas.

White Matter Hyperintensity Volume
Detailed methods for WMH volumetric quantification have been
previously described (Jiang et al., 2020). First, all T2-weighted
FLAIR images uniformly went through preprocessing operations
(bias correction and spatial normalization), followed by a
segmentation stage where the WMH was delineated. Sequentially,
coregistration of T2-weighted FLAIR image with MNI template
and Hammers atlas is used to analyze the distribution of WMH.

Covariates
Demographic information included sex, age, education years,
apolipoprotein E (APOE) ε4 carrier status, pulse pressure
(systolic-diastolic blood pressure), and body mass index (BMI).
The presence of APOE ε4 genotype was tested by using restriction
enzyme isoform genotyping on deoxyribonucleic acid (DNA)
extracts. APOE ε4 carriers were defined as subjects with at least
one ε4 allele (ε4/ε4, ε4/ε3, or ε4/ε2). WMH volume and total gray
matter volume were also selected as covariates.

Statistical Analyses
For continuous variables, differences between groups were
analyzed using one-way ANOVA with post-hoc least significance
difference (LSD) tests. Chi-squared tests were used to compare
frequency distributions of categorical variables. Differences in
CBF and ATT between diagnostic groups were analyzed using
ANOVA with post-hoc LSD tests, followed by correction with sex,
age, pulse pressure, BMI, WMH volume, and total gray matter
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volume. Linear regression analyses were performed to assess
relationships between CBF or ATT of each ROI (independent
variables) and cognition tested by MMSE and MoCA scores
(dependent variables) across the diagnostic groups. Sex, age,
education years, APOE ε4 carrier status, WMH volume, and
total gray matter volume were entered into each model as
covariates. The area under the curves (AUCs) between 1-
delay and 7-delay ASL for identification of AD were compared
through receiver operating characteristic (ROC) analyses in
leave-one-out cross-validation, in which the predicted values
were calculated using a binary logistic regression model. The
ROC curves were compared using the DeLong test. All tests
were two-tailed, and p < 0.05 was considered statistically
significant. All statistical analyses were performed using SPSS
24.0 and Medcalc software, and ROC figures were generated with
GraphPad Prism 8.0.

RESULTS

Participants and Characteristics
Table 1 summarized demographic and clinical data of 102
subjects, namely, 26 NC, 37 MCI, and 39 AD. AD group had
significantly older age, lower MMSE and MoCA scores, less BMI
and total gray matter volume, and more WMH volume compared
with MCI and NC groups (p < 0.05). Patients with AD had a
higher proportion of APOE ε4 carrier status than patients with
MCI and had lower education years than NC subjects (p < 0.05).
MoCA scores and gray matter volume were lower in the MCI
group than in the NC group (p< 0.05). There were no significant
differences in sex, pulse pressure, hypertension, diabetes, and
heart disease between groups (p > 0.05). Supplementary
Figure 1 showed the example images of CBF and ATT changes
in NC, MCI, and AD subjects.

Cerebral Blood Flow and Arterial Transit
Time Changes
The patients with AD had decreased CBF from 1-delay ASL
in all ROIs compared with MCI and NC groups (p < 0.05),
which consisted of 7-delay ASL except in the left hippocampus
(p = 0.051) (Table 2). ATT was prolonged in patients with AD
compared with MCI and NC groups in each ROI (p < 0.05)
(Table 3). There were no significant differences between MCI and
NC in CBF and ATT (p > 0.05). Additional correction for sex,
age, WMH volume, total gray matter volume, pulse pressure, and
BMI did not change the differences between groups.

Associations of Cognitive Performance
With Cerebral Blood Flow and Arterial
Transit Time
Across diagnostic groups, CBFs of posterior cingulate, cuneus,
and precuneus in 1-delay ASL were associated with MMSE and
MoCA adjusted for sex, age, education years, APOE ε4 carrier
status, gray matter volume, and WMH volume (β = 0.207∼0.306,
p < 0.05) (Supplementary Table 1). This relationship in 7-delay
had appeared in the left posterior cingulate, left hippocampus,
cuneus, and precuneus (β = 0.186∼0.305, p < 0.05 except
for the relationship between CBF in cuneus and MMSE)
(Supplementary Table 1). Regional ATT of right olfactory,
left hippocampus, and right hippocampus was significantly
correlated with MMSE (β = −0.212, −0.193, and −0.204,
respectively, p < 0.05). There was no significant relationship
between regional ATT and MoCA (p > 0.05).

Receiver Operating Characteristic
Analyses
To compare 1-delay and 7-delay ASL for the diagnostic accuracy,
we applied ROC analyses on perfusion parameters in all ROIs.

TABLE 1 | Demographic and clinical characteristics of participants.

NC (n = 26) MCI (n = 37) AD (n = 39) P-value‡

Age, year 59.77 ± 7.83 63.00 ± 7.06 68.15 ± 8.71*† <0.001

Female, n (%) 17 (65.4) 28 (75.7) 20 (51.3) 0.085

Education, year 12.35 ± 3.73 11.57 ± 3.36 10.05 ± 3.53* 0.030

APOE ε4 carrier, n (%) 7 (26.9) 4 (10.8) 19# (50.0)† 0.001

BMI, kg/m2 24.40 ± 2.59 24.11 ± 3.90 22.33 ± 3.22*† 0.020

Pulse pressure, mmHg 43.15 ± 14.17 46.35 ± 10.56 49.59 ± 14.20 0.150

MMSE score 29.04 ± 0.87 27.14 ± 1.57 17.10 ± 6.12*† <0.001

MoCA score 27.31 ± 1.49 21.70 ± 1.87* 11.03 ± 5.94*† <0.001

Gray matter volume, cm3 622.32 ± 61.33 570.56 ± 57.90* 535.37 ± 52.54*† <0.001

WMH volume, cm3 1.45 ± 2.90 1.62 ± 1.73 5.67 ± 5.47*† <0.001

Hypertension, n (%) 8 (30.8) 12 (32.4) 10 (25.6) 0.797

Diabetes, n (%) 3 (11.5) 8 (21.6) 5 (12.8) 0.457

Heart disease , n (%) 2 (7.7) 10 (27.0) 5 (12.8) 0.092

Data are mean ± standard deviation for continuous variables, and percentage (%) and number (n) of participants for categorical variables. Abbreviations: NC, normal
cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; APOE, apolipoprotein E; BMI, body mass index; MMSE, mini-mental state examination; MoCA,
Montreal cognitive assessment; WMH, white matter hyperintensity; LSD, least significance difference.
‡Analysis of variance and chi-squared tests.
Including coronary atherosclerotic heart disease and heart arrhythmia (such as atrial fibrillation).

#One patient had missing value.
Bolded values means the significant differences between AD/MCI/HC comparison. *refers to the significant differences between AD and NC. †refers to the significant
differences between AD and MCI.
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TABLE 2 | Regions of interest (ROI)-based CBF with 1-delay and 7-delay ASL in groups.

1-delay 7-delay

NC MCI AD P-value‡ NC MCI AD P-value‡

Olfactory L 46.82 ± 9.41 45.12 ± 10.30 37.19 ± 6.91*† <0.001 50.44 ± 10.64 51.74 ± 13.96 43.73 ± 10.70*† 0.011

Olfactory R 46.62 ± 9.70 44.61 ± 10.13 37.63 ± 6.99*† <0.001 49.73 ± 12.10 50.44 ± 14.48 42.55 ± 9.98*† 0.012

Posterior Cingulate L 67.27 ± 12.77 64.57 ± 18.07 47.06 ± 14.36*† <0.001 60.18 ± 13.52 61.00 ± 21.80 43.73 ± 16.22*† <0.001

Posterior Cingulate R 56.50 ± 11.12 55.08 ± 14.77 40.67 ± 11.08*† <0.001 48.56 ± 12.63 53.63 ± 18.24 38.45 ± 12.42*† <0.001

Hippocampus L 43.94 ± 8.79 44.39 ± 9.44 37.13 ± 6.75*† <0.001 44.27 ± 9.46 48.69 ± 14.83 38.29 ± 10.22† 0.001

Hippocampus R 43.23 ± 7.73 42.99 ± 10.29 36.16 ± 7.34*† 0.001 44.30 ± 9.00 47.83 ± 14.58 37.93 ± 9.53*† 0.001

Cuneus L 52.86 ± 10.66 51.90 ± 16.79 37.06 ± 12.11*† <0.001 53.94 ± 13.87 55.66 ± 20.59 38.65 ± 12.23*† <0.001

Cuneus R 53.22 ± 12.15 52.91 ± 17.29 38.33 ± 13.69*† <0.001 52.18 ± 13.87 56.58 ± 21.71 39.62 ± 13.85*† <0.001

Precuneus L 54.40 ± 10.48 53.02 ± 15.07 40.33 ± 10.60*† <0.001 55.45 ± 13.73 56.10 ± 19.70 40.47 ± 13.01*† <0.001

Precuneus R 53.57 ± 9.62 52.32 ± 14.07 38.88 ± 10.54*† <0.001 52.42 ± 12.42 55.00 ± 18.07 39.53 ± 11.18*† <0.001

Data are mean ± standard deviation (in milliliters per 100 g/min). Abbreviations: NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; ROI,
region of interest; CBF, cerebral blood flow; ASL, arterial spin labeling; L, left; R, right; LSD, least significance difference.
‡Analysis of variance.
*p < 0.05 compared to the NC group with LSD tests.
†p < 0.05 compared to the MCI group with LSD tests.

TABLE 3 | Region of interest (ROI)-based ATT with 7-delay ASL in groups.

NC MCI AD P-value‡

Olfactory L 1.28 ± 0.16 1.29 ± 0.13 1.38 ± 0.25*† 0.037

Olfactory R 1.30 ± 0.19 1.27 ± 0.11 1.42 ± 0.24*† 0.003

Posterior Cingulate L 1.60 ± 0.19 1.57 ± 0.20 1.71 ± 0.19*† 0.005

Posterior Cingulate R 1.52 ± 0.17 1.52 ± 0.19 1.64 ± 0.20*† 0.009

Hippocampus L 1.34 ± 0.14 1.34 ± 0.14 1.49 ± 0.20*† <0.001

Hippocampus R 1.40 ± 0.16 1.37 ± 0.14 1.49 ± 0.20*† 0.008

Cuneus L 1.73 ± 0.20 1.71 ± 0.20 1.86 ± 0.20*† 0.003

Cuneus R 1.77 ± 0.18 1.72 ± 0.20 1.87 ± 0.20*† 0.003

Precuneus L 1.70 ± 0.18 1.65 ± 0.18 1.80 ± 0.19*† 0.002

Precuneus R 1.66 ± 0.18 1.64 ± 0.18 1.78 ± 0.20*† 0.003

Data are mean ± standard deviation (in seconds). Abbrevaitions: NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; ROI, region of interest;
ATT, arterial transit time; ASL, arterial spin labeling; L, left; R, right; LSD, least significance difference.
‡Analysis of variance.
*p < 0.05 compared to the NC group with LSD tests.
†p < 0.05 compared to the MCI group with LSD tests.

As a result, for CBF of 1-delay the AUCs for the AD/NC and
AD/MCI comparisons were 0.94 (p< 0.001) and 0.83 (p< 0.001),
respectively, which were similar to CBF of 7-delay (AUC = 0.96,
p < 0.001 for AD/NC comparison; AUC = 0.83, p < 0.001
for AD/MCI comparison) (Figures 1A,B and Supplementary
Table 2). While the AUC for CBF of 7-delay in MCI/NC
comparison was higher (AUC = 0.79, p < 0.001) compared with
that for CBF of 1-delay (AUC = 0.69, p < 0.001) (Figure 1C and
Supplementary Table 2). We compared the diagnostic capacities
of combination of CBF and ATT of 7-delay and found that
was more discriminative performance for AD/NC, AD/MCI,
and MCI/NC comparisons with AUCs of 0.96 (p < 0.001), 0.89
(p< 0.001), and 0.89 (p< 0.001), respectively (Figures 1A–C and
Supplementary Table 2). Furthermore, the AUCs of combination
of CBF and ATT of 7-delay, sex, age, APOE ε4 carrier status,
and educational years (as a composite biomarker) were higher
than those mentioned above (AUC = 0.98, p < 0.001 for AD/NC
comparison; AUC = 0.96, p < 0.001 for AD/MCI comparison;

and AUC = 0.90, p< 0.001 for MCI/NC comparison) (Figure 1D
and Supplementary Table 2). In comparison of AUCs between
groups, there were no differences in AUCs between AD and
NC groups (p > 0.05). The AUC of composite showed higher
diagnostic efficiency than other methods in AD/MCI comparison
(p < 0.05). The AUCs of CBF and ATT of 7-delay and composite
were more powerful than that of CBF in 1-delay for MCI/NC
identification (p < 0.05) (Supplementary Table 3).

Subgroup Receiver Operating
Characteristic Analyses by Age
We performed subgroup ROC analyses according to age (middle-
aged group [<65 years] and old-aged group [≥65 years]) in
CBF of 7-delay ASL. CBF of 7-delay ASL in middle-age group
had a significantly discriminative performance for the AD/NC,
AD/MCI, and MCI/NC comparisons (AUC = 0.97, 0.95, and
0.83, respectively, p < 0.05). The method still had significantly
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FIGURE 1 | Receiver operating characteristic (ROC) analyses for perfusion parameters of 1-delay and 7-delay ASL in all ROIs in distinguishing different stages of AD.
ROC curves for CBF of 1-delay, CBF of 7-delay, or the combination of CBF and ATT of 7-delay in differentiating AD from NC (A) and MCI (B) and MCI from NC (C).
(D) AUCs for the combination of CBF and ATT of 7-delay, sex, age, APOE ε4 carrier status, and education years (composite) in NC, patients with AD and MCI. NC,
normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; APOE, apolipoprotein E; ROI, region of interest; CBF, cerebral blood flow; ATT, arterial
transit time; AUC, area under the curve; ROC, receiver operating characteristic.

diagnostic performance in old-age group (AUC = 0.97, 0.78, and
0.94, respectively, p < 0.05). Besides, there were no significant
differences in CBF of 7-delay ASL for identification of AD or MCI
between age subgroups (p > 0.05) (Supplementary Table 4).

DISCUSSION

Our study revealed significant CBF decrease and ATT
prolongation in the ten ROIs in patients with AD. Correlation
analysis showed a strong association between regional CBF and
cognitive function across the diagnostic groups. Combining
CBF and ATT of 7-delay ASL based on ROIs showed a

higher performance for the differentiation of MCI compared
with CBF of 1-delay.

The regional hypoperfusion changes measured by 1-delay ASL
of patients with AD compared with patients with MCI and
NC subjects in this study were consistent with previous studies
(Asllani et al., 2008; Dai et al., 2009; Binnewijzend et al., 2013;
Ma et al., 2017), similar to CBF changes measured with 7-delay
ASL, supporting the theory that patients with AD have a greater
decrease of CBF in the widespread brain than MCI and NC
groups. It was found that patients with MCI exhibited decreased
CBF in the precuneus and posterior cingulate compared to
healthy control or subjective cognitive impairment subjects (Dai
et al., 2009; Binnewijzend et al., 2013; Soman et al., 2021).

Frontiers in Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 934471

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-934471 July 14, 2022 Time: 17:31 # 7

Sun et al. Diagnostic Applications of ASL in AD

Dai et al. (2009) observed increased CBF in the hippocampus
and limbic system in patients with MCI, which suggests a
compensatory mechanism during the MCI stage of AD. However,
our results showed no significant differences in CBF of these
ROIs measured by 1-delay or 7-delay ASL in patients with MCI
compared to NC. Another prominent abnormality using 7-delay
ASL was a significant prolongation of ATT in patients with AD
compared to MCI and NC subjects. Such findings might support
the hypothesis that there is a neurovascular impairment with
the AD pathologic process (Østergaard et al., 2013; Love and
Miners, 2016; Nelson et al., 2016). While Yoshiura et al. (2009)
using multi-TI pulsed ASL reported patients with AD had no
significant ATT prolongation in the hypoperfusion area of the
bilateral precunei and the left posterior cingulate compared to
NC. The lower signal-to-noise ratio with pulsed ASL and different
sample sizes might contribute to the discrepancy in our results
(Alsop et al., 2015).

There were positive correlations between CBF with 1-
delay and MMSE or MoCA in the posterior cingulate,
precuneus, and cuneus with all subjects after adjusting for
sex, age, education years, APOE ε4 carrier status, total gray
matter volume, and WMH volume, consistent with the
previous studies (Binnewijzend et al., 2013; Liu et al., 2015;
Soman et al., 2021; Zhang et al., 2021). We also found the
association between CBF with 7-delay and cognition was
prominent in the left posterior cingulate, left hippocampus,
left cuneus, and precuneus; and ATT was negatively associated
with MMSE but not MoCA in the hippocampus and right
olfactoffff0100a0210000ffff0100a0210000ry. The results may
suggest that multi-delay ASL can also add value to objective
cognitive evaluation.

According to previous literature, CBF in the precuneus and
posterior cingulate using pCASL identified patients with AD
from NC or subjective cognitive impairment with an AUC up
to 0.80, but the predicted probability was poor in distinguishing
MCI from AD or NC with AUCs of 0.59 and 0.78, respectively
(Binnewijzend et al., 2013; Thomas et al., 2019). Liu et al. (2015)
found similar AUC for CBF of posterior cingulate measured by
pCASL with PLD of 1.5 s and 2.5 s in AD and NC (0.891 and
0.882, respectively), whereas Dolui et al. (2020) reported AUC of
0.77 for CBF in the same region using pCASL with PLD of 1.5 s.
In the present study, given the pattern of spread of hypoperfusion
in AD starting from the precuneus, spreading to the rest of
the parietal cortex and the cingulate gyrus, then the frontal
and temporal lobes, we selected the ten ROIs, namely, the left
and right regions of olfactory, posterior cingulate, hippocampus,
cuneus, and precuneus to perform ROC analyses (Dai et al., 2009;
Binnewijzend et al., 2013; Wierenga et al., 2014; Xekardaki et al.,
2015; Love and Miners, 2016; Duan et al., 2021). As a result,
ROIs-based CBF with 1-delay performed well in distinguishing
AD from MCI and NC, but not MCI from NC. A similar
observation was found in predicting AD with 7-delay pCASL,
with higher performance in differentiating MCI from NC with
an AUC of 0.79. Combining CBF and ATT with 7-delay showed
higher discriminatory power in predicting AD or MCI with
AUCs up to 90%, when adding to sex, age, APOE ε4 carrier
status, and education years, the diagnostic performance was

further increased. Our study indicated that the combination
of regional CBF and ATT of the ten ROIs measured by 7-
delay pCASL could be a potential sensitive biomarker for the
identification of early AD.

Our study had several limitations. First, the sample size was
limited to a single center and some analyses may lack sufficient
power. More subjects need to be recruited from multi-centers
to validate the current findings. Second, the diagnosis of MCI
or AD was based on clinical symptoms and neuropsychological
assessment with no evidence of specific biomarkers for Aβ and
tau pathology. However, we screened subjects carefully with
a medical history, detailed neuropsychological evaluations to
exclude those with MCI or dementia not due to AD, and
the final consensus diagnosis was decided by the experienced
neurologists. Of course, further studies will perform on subjects
with pathological biomarkers of AD. Finally, partial volume
correction (PVC) was not performed for the measurement of
CBF, which confounds the evaluation of perfusion due to brain
atrophy (Zhang et al., 2017; Chappell et al., 2021). Our results
have shown the high differentiation performance for patients
with AD, possibly owing to the additive discriminatory effect of
cortical atrophy (Østergaard et al., 2013; Wierenga et al., 2014;
Kisler et al., 2017; Ma et al., 2017), indicating that PVC may not
necessary for the identification of AD. However, further research
is warranted to use PVC with ASL to explore the CBF changes and
diagnostic performance for NC subjects and patients with MCI
because of the complex changes in atrophy and in perfusion with
age and disease (Chen et al., 2011).

CONCLUSION

Our study showed patients with AD had apparent CBF
decrease and ATT prolongation in ROIs using multi-delay ASL,
supporting that there is a neurovascular impairment with the
AD pathologic process. The combination of CBF and ATT
with 7-delay ASL in the ten ROIs showed a higher diagnostic
performance for MCI than CBF of 1-delay, when adding to
sex, age, APOE ε4 carrier status, and education years, the
diagnostic performance was further increased, presenting a
potential imaging biomarker in early AD.
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